GLAN: Global Local Attention Network for Thoracic Disease Classification to Enhance Heart Failure Diagnosis

心力衰竭 计算机科学 疾病 心脏病学 医学 内科学
作者
Dengao Li,Yujia Mu,Jumin Zhao,Changcheng Shi,Fei Wang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (5)
标识
DOI:10.1002/ima.23168
摘要

ABSTRACT Chest x‐ray (CXR) is an effective method for diagnosing heart failure, and identifying important features such as cardiomegaly, effusion, and edema on patient chest x‐rays is significant for aiding the treatment of heart failure. However, manually identifying a vast amount of CXR data places a huge burden on physicians. Deep learning's progression has led to the utilization of this technology in numerous research aimed at tackling these particular challenges. However, many of these studies utilize global learning methods, where the contribution of each pixel to the classification is considered equal, or they overly focus on small areas of the lesion while neglecting the global context. In response to these issues, we propose the Global Local Attention Network (GLAN), which incorporates an improved attention module on a branched structure. This enables the network to capture small lesion areas while also considering both local and global features. We evaluated the effectiveness of the proposed model by testing it on multiple public datasets and real‐world datasets. Compared to the state‐of‐the‐art methods, our network structure demonstrated greater accuracy and effectiveness in the identification of three key features: cardiomegaly, effusion, and edema. This provides more targeted support for diagnosing and treating heart failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
非鱼完成签到 ,获得积分10
1秒前
FashionBoy应助luoliping采纳,获得10
1秒前
nee完成签到,获得积分10
2秒前
fxy完成签到,获得积分10
2秒前
2秒前
2秒前
研友_Z119gZ发布了新的文献求助10
3秒前
SciGPT应助昵称采纳,获得10
3秒前
4秒前
4秒前
CipherSage应助WangY1263采纳,获得10
4秒前
wanci应助黑米粥采纳,获得10
4秒前
皓月星辰发布了新的文献求助10
6秒前
6秒前
6秒前
丘比特应助本草石之寒温采纳,获得10
7秒前
哆唻完成签到,获得积分0
7秒前
香蕉觅云应助林登万采纳,获得10
7秒前
XiaoM发布了新的文献求助10
7秒前
8秒前
111完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
不二宋完成签到,获得积分10
8秒前
Kiki完成签到,获得积分10
9秒前
10秒前
想想zzz发布了新的文献求助10
10秒前
勤劳的芳应助wys2493采纳,获得10
10秒前
碧蓝寄凡完成签到,获得积分20
10秒前
萧水白应助csy采纳,获得10
10秒前
郭郭郭郭完成签到,获得积分10
11秒前
11秒前
友好似狮发布了新的文献求助40
11秒前
12秒前
skj发布了新的文献求助10
12秒前
YangyangLiu发布了新的文献求助10
12秒前
晶晶完成签到 ,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296982
求助须知:如何正确求助?哪些是违规求助? 2932577
关于积分的说明 8457843
捐赠科研通 2605253
什么是DOI,文献DOI怎么找? 1422179
科研通“疑难数据库(出版商)”最低求助积分说明 661332
邀请新用户注册赠送积分活动 644534