Machine-learning-driven discovery of metal–organic framework adsorbents for hexavalent chromium removal from aqueous environments

六价铬 吸附 水溶液 材料科学 化学 多孔性 金属有机骨架 化学工程 有机化学 复合材料 冶金 工程类
作者
Mingxing Jiang,Wei Fu,Ying Wang,Dong Xu,Sitan Wang
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
标识
DOI:10.1016/j.jcis.2024.02.084
摘要

Metal-organic frameworks (MOFs) have been widely studied for Cr(VI) adsorption in water. Theoretically, numerous MOFs can be synthesised by assembling diverse metals and ligands. However, the traditional manual experimentation for screening high-performance MOFs is resource-intensive and inefficient.A screening strategy for MOFs based on machine learning was proposed for the adsorption and removal of Cr(VI) from water. By collecting the characteristics of MOFs and the experimental parameters of Cr(VI) adsorption from the literature, a dataset was constructed to predict the adsorption performance. Among the six regression models, the model trained by the extreme gradient boosted tree algorithm had the best performance and was used to simulate the adsorption and screen potential high-performance adsorbents.Structure-property analysis indicated that prepared MOF adsorbents with properties of 0.37 < largest cavity diameter < 0.71 nm, 0.18 < pore volume < 0.57 cm3/g, 412 < specific surface area < 1588 m2/g, 0.43 < void fraction < 0.62 will achieve enhanced adsorption of Cr(VI) in water. High-performance adsorbents were successfully screened using a combination of machine-learning prediction and analysis. Experiments were conducted to verify the exceptional adsorption capacity of UiO-66 and MOF-801. This method effectively identified adsorbents and accelerated the development of new MOF adsorbents for contaminant removal, providing a novel approach for the discovery of superior adsorbents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
热切菩萨应助ameng_xu采纳,获得10
1秒前
鄂海菡完成签到,获得积分10
2秒前
shae_2022发布了新的文献求助10
3秒前
悦动发布了新的文献求助10
5秒前
jimmyyyyyy发布了新的文献求助10
7秒前
Renhong发布了新的文献求助30
8秒前
cx完成签到 ,获得积分10
9秒前
9秒前
Lucas应助Anyemzl采纳,获得10
10秒前
JamesPei应助skyer1采纳,获得10
11秒前
CodeCraft应助成就铸海采纳,获得10
12秒前
12秒前
打打应助创新采纳,获得10
13秒前
Bai发布了新的文献求助10
14秒前
子非鱼发布了新的文献求助30
15秒前
科研通AI2S应助MEREDITH采纳,获得10
16秒前
16秒前
捞鱼发布了新的文献求助10
16秒前
搜集达人应助Nicy采纳,获得10
18秒前
19秒前
诚心淇发布了新的文献求助10
23秒前
23秒前
xhp完成签到,获得积分10
23秒前
若雨凌风应助xuan采纳,获得10
24秒前
25秒前
脑洞疼应助gggyyy采纳,获得10
25秒前
小白应助MaFY采纳,获得50
26秒前
原林皓发布了新的文献求助10
26秒前
xhp发布了新的文献求助10
27秒前
蜗牛二世完成签到 ,获得积分10
28秒前
悦动完成签到,获得积分20
28秒前
Anyemzl发布了新的文献求助10
28秒前
29秒前
29秒前
Nicy发布了新的文献求助10
30秒前
大模型应助诚心淇采纳,获得10
30秒前
30秒前
winter发布了新的文献求助10
32秒前
小蘑菇应助hanjresearch采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469879
求助须知:如何正确求助?哪些是违规求助? 3063087
关于积分的说明 9081400
捐赠科研通 2753353
什么是DOI,文献DOI怎么找? 1510835
邀请新用户注册赠送积分活动 698104
科研通“疑难数据库(出版商)”最低求助积分说明 698028