亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MDC-RHT: Multi-Modal Medical Image Fusion via Multi-Dimensional Dynamic Convolution and Residual Hybrid Transformer

计算机科学 人工智能 残余物 图像融合 情态动词 模式识别(心理学) 卷积神经网络 融合 像素 特征提取 卷积(计算机科学) 核(代数) 计算机视觉 人工神经网络 算法 图像(数学) 数学 哲学 组合数学 语言学 化学 高分子化学
作者
Wenqing Wang,Ji He,Han Liu,Wei Yuan
出处
期刊:Sensors [MDPI AG]
卷期号:24 (13): 4056-4056 被引量:3
标识
DOI:10.3390/s24134056
摘要

The fusion of multi-modal medical images has great significance for comprehensive diagnosis and treatment. However, the large differences between the various modalities of medical images make multi-modal medical image fusion a great challenge. This paper proposes a novel multi-scale fusion network based on multi-dimensional dynamic convolution and residual hybrid transformer, which has better capability for feature extraction and context modeling and improves the fusion performance. Specifically, the proposed network exploits multi-dimensional dynamic convolution that introduces four attention mechanisms corresponding to four different dimensions of the convolutional kernel to extract more detailed information. Meanwhile, a residual hybrid transformer is designed, which activates more pixels to participate in the fusion process by channel attention, window attention, and overlapping cross attention, thereby strengthening the long-range dependence between different modes and enhancing the connection of global context information. A loss function, including perceptual loss and structural similarity loss, is designed, where the former enhances the visual reality and perceptual details of the fused image, and the latter enables the model to learn structural textures. The whole network adopts a multi-scale architecture and uses an unsupervised end-to-end method to realize multi-modal image fusion. Finally, our method is tested qualitatively and quantitatively on mainstream datasets. The fusion results indicate that our method achieves high scores in most quantitative indicators and satisfactory performance in visual qualitative analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大伟完成签到,获得积分10
3秒前
3秒前
平常以云完成签到 ,获得积分10
5秒前
悠树里完成签到,获得积分10
9秒前
无奈寒梦发布了新的文献求助10
14秒前
31秒前
量子星尘发布了新的文献求助10
33秒前
36秒前
hEbuy完成签到,获得积分10
40秒前
51秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
汉堡包应助Developing_human采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
暴躁的奇异果完成签到,获得积分10
4分钟前
4分钟前
领导范儿应助Ming采纳,获得10
4分钟前
4分钟前
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491