非阻塞I/O
材料科学
钝化
钙钛矿(结构)
分子
兴奋剂
离子
能量转换效率
纳米技术
化学工程
光电子学
催化作用
图层(电子)
有机化学
化学
工程类
作者
Nan Yan,Yang Cao,Zhiwen Jin,Yucheng Liu,Shengzhong Liu,Zhimin Fang,Jiangshan Feng
标识
DOI:10.1002/adma.202403682
摘要
Functional agents are verified to efficiently enhance device performance of perovskite solar cells (PSCs) through surface engineering. However, the influence of intrinsic characteristics of molecules on final device performance is overlooked. Here, a surface reconstruction strategy is developed to enhance the efficiency of inverted PSCs by mitigating the adverse effects of lead chelation (LC) molecules. Bathocuproine (BCP) is chosen as the representative of LC molecules for its easy accessibility and outstanding optoelectronic properties. During this strategy, BCP molecules on perovskite surface are first dissolved in solvents and then captured specially by undercoordinated Pb
科研通智能强力驱动
Strongly Powered by AbleSci AI