🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情
已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessing Creativity Across Multi-Step Intervention Using Generative AI Models

创造力 生成语法 干预(咨询) 计算机科学 心理学 生成模型 数学教育 人工智能 社会心理学 精神科
作者
Eran Hadas,Arnon Hershkovitz
出处
期刊:Journal of learning Analytics 卷期号:: 1-19
标识
DOI:10.18608/jla.2025.8571
摘要

Creativity is an imperative skill for today’s learners, one that has important contributions to issues of inclusion and equity in education. Therefore, assessing creativity is of major importance in educational contexts. However, scoring creativity based on traditional tools suffers from subjectivity and is heavily time- and labour-consuming. This is indeed the case for the commonly used Alternative Uses Test (AUT), in which participants are asked to list as many different uses as possible for a daily object. The test measures divergent thinking (DT), which involves exploring multiple possible solutions in various semantic domains. This study leverages recent advancements in generative AI (GenAI) to automate the AUT scoring process, potentially increasing efficiency and objectivity. Using two validated models, we analyze the dynamics of creativity dimensions in a multi-step intervention aimed at improving creativity by using repeated AUT sessions (N=157 9th-grade students). Our research questions focus on the behavioural patterns of DT dimensions over time, their correlation with the number of practice opportunities, and the influence of response order on creativity scores. The results show improvement in fluency and flexibility, as a function of practice opportunities, as well as various correlations between DT dimensions. By automating the scoring process, this study aims to provide deeper insights into the development of creative skills over time and explore the capabilities of GenAI in educational assessments. Eventually, the use of automatic evaluation can incorporate creativity evaluation in various educational processes at scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoshikun发布了新的文献求助10
1秒前
mumu发布了新的文献求助10
1秒前
耿大海完成签到,获得积分10
1秒前
迟大猫应助明芬采纳,获得10
2秒前
科研通AI5应助王金金采纳,获得10
3秒前
刘刘完成签到,获得积分10
4秒前
Milou发布了新的文献求助30
4秒前
6秒前
李健应助lihaodajia采纳,获得10
7秒前
我是老大应助励志小薛采纳,获得30
7秒前
多巴胺完成签到,获得积分10
9秒前
10秒前
check003完成签到,获得积分10
10秒前
12秒前
luoshikun发布了新的文献求助10
13秒前
多巴胺发布了新的文献求助10
15秒前
闹钟响了发布了新的文献求助10
16秒前
18秒前
19秒前
22秒前
迟大猫应助明芬采纳,获得10
23秒前
太乙假人完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
ding应助霓娜酱采纳,获得10
25秒前
无理取闹发布了新的文献求助10
25秒前
27秒前
27秒前
领导范儿应助luoshikun采纳,获得10
28秒前
28秒前
上官若男应助谷大喵唔采纳,获得10
29秒前
xiuxiu发布了新的文献求助10
29秒前
30秒前
励志小薛发布了新的文献求助30
30秒前
Owen应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得30
32秒前
Singularity应助科研通管家采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600139
求助须知:如何正确求助?哪些是违规求助? 3168942
关于积分的说明 9559818
捐赠科研通 2875340
什么是DOI,文献DOI怎么找? 1578719
邀请新用户注册赠送积分活动 742267
科研通“疑难数据库(出版商)”最低求助积分说明 725121