ISTR: Mask-Embedding-Based Instance Segmentation Transformer

计算机科学 嵌入 变压器 分割 解码方法 人工智能 模式识别(心理学) 离散余弦变换 算法 工程类 图像(数学) 电压 电气工程
作者
Jie Hu,Yao Lu,Shengchuan Zhang,Liujuan Cao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2895-2907
标识
DOI:10.1109/tip.2024.3385980
摘要

Transformer-based instance-level recognition has attracted increasing research attention recently due to the superior performance. However, although attempts have been made to encode masks as embeddings into Transformer-based frameworks, how to combine mask embeddings and spatial information for a transformer-based approach is still not fully explored. In this paper, we revisit the design of mask-embedding-based pipelines and propose an Instance Segmentation TRansformer (ISTR) with Mask Meta-Embeddings (MME), leveraging the strengths of transformer models in encoding embedding information and incorporating spatial information from mask embeddings. ISTR incorporates a recurrent refining head that consists of a Dynamic Box Predictor (DBP), a Mask Information Generator (MIG), and a Mask Meta-Decoder (MMD). To improve the quality of mask embeddings, MME interprets the mask encoding-decoding processes as a mutual information maximization problem, which unifies the objective functions of different decoding schemes such as Principal Component Analysis (PCA) and Discrete Cosine Transform (DCT) with a meta-formulation. Under the meta-formulation, a learnable Spatial Mask Tuner (SMT) is further proposed, which fuses the spatial and embedding information produced from MIG and can significantly boost the segmentation performance. The resulting varieties, i.e., ISTR-PCA, ISTR-DCT, and ISTR-SMT, demonstrate the effectiveness and efficiency of incorporating mask embeddings with the query-based instance segmentation pipelines. On the COCO dataset, ISTR surpasses all predominant mask-embedding-based models by a large margin, and achieves competitive performance compared to concurrent state-of-the-art models. On the Cityscapes dataset, ISTR also outperforms several strong baselines. Our code has been made available at: https://github.com/hujiecpp/ISTR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橘子会发光完成签到,获得积分10
1秒前
xing完成签到 ,获得积分10
1秒前
1秒前
sinian完成签到,获得积分10
2秒前
3dyf发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
3秒前
di完成签到 ,获得积分10
4秒前
郭莹莹发布了新的文献求助10
6秒前
科研通AI6.1应助谦让蛋挞采纳,获得10
6秒前
6秒前
Maria发布了新的文献求助10
7秒前
7秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
蔚蓝绽放发布了新的文献求助30
13秒前
14秒前
小垃圾发布了新的文献求助10
16秒前
生动觅柔完成签到,获得积分10
16秒前
17秒前
JamesPei应助Miranda采纳,获得10
17秒前
junyang发布了新的文献求助10
18秒前
科研通AI6.1应助Ying莹采纳,获得10
18秒前
Lucas应助luluw采纳,获得10
18秒前
19秒前
opus17完成签到,获得积分10
20秒前
难过的曼香完成签到,获得积分10
20秒前
miracle发布了新的文献求助30
21秒前
共享精神应助di采纳,获得10
22秒前
Miranda完成签到,获得积分10
23秒前
谦让蛋挞发布了新的文献求助10
24秒前
哭泣的吐司完成签到,获得积分10
24秒前
CipherSage应助Leonfun123采纳,获得10
25秒前
25秒前
26秒前
28秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793382
求助须知:如何正确求助?哪些是违规求助? 5748366
关于积分的说明 15485460
捐赠科研通 4920284
什么是DOI,文献DOI怎么找? 2648817
邀请新用户注册赠送积分活动 1596177
关于科研通互助平台的介绍 1550776