ISTR: Mask-Embedding-Based Instance Segmentation Transformer

计算机科学 嵌入 变压器 分割 解码方法 人工智能 模式识别(心理学) 离散余弦变换 算法 工程类 图像(数学) 电压 电气工程
作者
Jie Hu,Yao Lu,Shengchuan Zhang,Liujuan Cao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2895-2907
标识
DOI:10.1109/tip.2024.3385980
摘要

Transformer-based instance-level recognition has attracted increasing research attention recently due to the superior performance. However, although attempts have been made to encode masks as embeddings into Transformer-based frameworks, how to combine mask embeddings and spatial information for a transformer-based approach is still not fully explored. In this paper, we revisit the design of mask-embedding-based pipelines and propose an Instance Segmentation TRansformer (ISTR) with Mask Meta-Embeddings (MME), leveraging the strengths of transformer models in encoding embedding information and incorporating spatial information from mask embeddings. ISTR incorporates a recurrent refining head that consists of a Dynamic Box Predictor (DBP), a Mask Information Generator (MIG), and a Mask Meta-Decoder (MMD). To improve the quality of mask embeddings, MME interprets the mask encoding-decoding processes as a mutual information maximization problem, which unifies the objective functions of different decoding schemes such as Principal Component Analysis (PCA) and Discrete Cosine Transform (DCT) with a meta-formulation. Under the meta-formulation, a learnable Spatial Mask Tuner (SMT) is further proposed, which fuses the spatial and embedding information produced from MIG and can significantly boost the segmentation performance. The resulting varieties, i.e., ISTR-PCA, ISTR-DCT, and ISTR-SMT, demonstrate the effectiveness and efficiency of incorporating mask embeddings with the query-based instance segmentation pipelines. On the COCO dataset, ISTR surpasses all predominant mask-embedding-based models by a large margin, and achieves competitive performance compared to concurrent state-of-the-art models. On the Cityscapes dataset, ISTR also outperforms several strong baselines. Our code has been made available at: https://github.com/hujiecpp/ISTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panpan完成签到,获得积分10
刚刚
2秒前
迅速友容发布了新的文献求助10
3秒前
4秒前
chenhui完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助smj采纳,获得10
6秒前
lucky完成签到,获得积分10
7秒前
qio一眼发布了新的文献求助10
10秒前
10秒前
薰硝壤应助wangayting采纳,获得10
11秒前
12秒前
舒适大碗完成签到 ,获得积分10
13秒前
今后应助HealthyCH采纳,获得10
13秒前
lalalala完成签到,获得积分10
14秒前
科研通AI2S应助liyuqian采纳,获得30
15秒前
16秒前
坚定自信完成签到,获得积分10
16秒前
16秒前
西岭发布了新的文献求助10
17秒前
尊敬的半梅完成签到 ,获得积分10
18秒前
丘比特应助萱萱采纳,获得10
18秒前
xkh完成签到,获得积分10
19秒前
21秒前
xkh发布了新的文献求助10
22秒前
无名完成签到 ,获得积分10
22秒前
Hhhh完成签到 ,获得积分10
23秒前
Jasper应助HealthyCH采纳,获得10
24秒前
小L发布了新的文献求助10
24秒前
可爱多885完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
鱼yu完成签到,获得积分10
27秒前
李健的小迷弟应助11采纳,获得10
28秒前
Celeste完成签到,获得积分10
29秒前
缥缈丑完成签到,获得积分10
30秒前
JamesPei应助to高坚果采纳,获得10
31秒前
34秒前
smj完成签到,获得积分10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141210
求助须知:如何正确求助?哪些是违规求助? 2792192
关于积分的说明 7801885
捐赠科研通 2448394
什么是DOI,文献DOI怎么找? 1302521
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237