Asymmetric influence-based superposed random walk link prediction algorithm in complex networks

随机游动 链接(几何体) 复杂网络 算法 计算机科学 统计物理学 数学 物理 统计 计算机网络 万维网
作者
Shihu Liu,Xueli Feng,Jin Yang
出处
期刊:International Journal of Modern Physics C [World Scientific]
标识
DOI:10.1142/s0129183124420026
摘要

Random walk-based link prediction algorithms have achieved desirable results for complex network mining, but in these algorithms, the transition probability of particles usually only considers node degrees, resulting in particles being able to randomly select adjacent nodes for random walks in an equal probability manner, to solve this problem, the asymmetric influence-based superposed random walk link prediction algorithm is proposed in this paper. This algorithm encourages particles to choose the next node at each step of the random walk process based on the asymmetric influence between nodes. To this end, we fully consider the topological information around each node and propose the asymmetric influence between nodes. Then, an adjustable parameter is applied to normalize the degree of nodes and the asymmetric influence between nodes into transition probability. Based on this, the proposed new transition probability is applied to superposed random walk process to measure the similarity between all nodes in the network. Empirical experiments are conducted on 16 real-world network datasets such as social network, ecology network, and animal network. The experimental results show that the proposed algorithm has high prediction accuracy in most network, compared with 10 benchmark indices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Unique采纳,获得10
1秒前
2秒前
梧桐驳回了杳鸢应助
2秒前
3秒前
summer完成签到,获得积分20
3秒前
3秒前
科研通AI2S应助研友_nVNBVn采纳,获得10
4秒前
8R60d8应助研友_nVNBVn采纳,获得10
4秒前
zhongu应助研友_nVNBVn采纳,获得30
4秒前
科研通AI2S应助研友_nVNBVn采纳,获得10
4秒前
赘婿应助研友_nVNBVn采纳,获得10
4秒前
长情半邪完成签到 ,获得积分10
4秒前
maox1aoxin应助研友_nVNBVn采纳,获得30
4秒前
4秒前
星辰大海应助语冰采纳,获得10
4秒前
hui发布了新的文献求助10
5秒前
杳鸢应助王秋婷采纳,获得10
6秒前
8秒前
goldenrod完成签到,获得积分10
9秒前
10秒前
Unique完成签到,获得积分20
10秒前
11秒前
12秒前
Unique发布了新的文献求助10
13秒前
周周zy完成签到,获得积分10
14秒前
laryc发布了新的文献求助10
17秒前
17秒前
桐桐应助芋泥红豆椰椰采纳,获得10
17秒前
连糜发布了新的文献求助10
18秒前
18秒前
19秒前
周周zy发布了新的文献求助10
19秒前
20秒前
语冰发布了新的文献求助10
21秒前
22秒前
煤炭不甜应助科研通管家采纳,获得20
22秒前
思源应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270599
求助须知:如何正确求助?哪些是违规求助? 2910018
关于积分的说明 8351861
捐赠科研通 2580473
什么是DOI,文献DOI怎么找? 1403490
科研通“疑难数据库(出版商)”最低求助积分说明 655841
邀请新用户注册赠送积分活动 635217