A Novel Artificial Intelligence Based Denoising Method for Ultra-Low Dose CT Used for Lung Cancer Screening

医学 降噪 人工智能 肺癌 计算机科学 核医学 特征(语言学) 模式识别(心理学) 放射科 内科学 语言学 哲学
作者
Larisa Gorenstein,Amir Onn,Michael Green,Arnaldo Mayer,Shlomo Segev,Edith M. Marom
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (11): 2588-2597
标识
DOI:10.1016/j.acra.2023.02.019
摘要

To assess ultra-low-dose (ULD) computed tomography as well as a novel artificial intelligence-based reconstruction denoising method for ULD (dULD) in screening for lung cancer.This prospective study included 123 patients, 84 (70.6%) men, mean age 62.6 ± 5.35 (55-75), who had a low dose and an ULD scan. A fully convolutional-network, trained using a unique perceptual loss was used for denoising. The network used for the extraction of the perceptual features was trained in an unsupervised manner on the data itself by denoising stacked auto-encoders. The perceptual features were a combination of feature maps taken from different layers of the network, instead of using a single layer for training. Two readers independently reviewed all sets of images.ULD decreased average radiation-dose by 76% (48%-85%). When comparing negative and actionable Lung-RADS categories, there was no difference between dULD and LD (p = 0.22 RE, p > 0.999 RR) nor between ULD and LD scans (p = 0.75 RE, p > 0.999 RR). ULD negative likelihood ratio (LR) for the readers was 0.033-0.097. dULD performed better with a negative LR of 0.021-0.051. Coronary artery calcifications (CAC) were documented on the dULD scan in 88(74%) and 81(68%) patients, and on the ULD in 74(62.2%) and 77(64.7%) patients. The dULD demonstrated high sensitivity, 93.9%-97.6%, with an accuracy of 91.7%. An almost perfect agreement between readers was noted for CAC scores: for LD (ICC = 0.924), dULD (ICC = 0.903), and for ULD (ICC = 0.817) scans.A novel AI-based denoising method allows a substantial decrease in radiation dose, without misinterpretation of actionable pulmonary nodules or life-threatening findings such as aortic aneurysms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冲刺的仙人掌完成签到 ,获得积分10
1秒前
zch曹县66完成签到,获得积分10
1秒前
852应助威武鞅采纳,获得10
2秒前
3秒前
上好佳发布了新的文献求助10
3秒前
SciGPT应助LV采纳,获得10
3秒前
3秒前
Curisten完成签到,获得积分10
3秒前
ljscjth发布了新的文献求助10
5秒前
123完成签到,获得积分10
8秒前
10秒前
FashionBoy应助xentertain采纳,获得10
10秒前
宁安完成签到,获得积分10
10秒前
11秒前
WANG完成签到,获得积分10
12秒前
和平完成签到 ,获得积分10
12秒前
13秒前
13秒前
优雅静枫发布了新的文献求助80
14秒前
FashionBoy应助mo采纳,获得10
15秒前
15秒前
zzl1111发布了新的文献求助10
15秒前
Owen应助木子采纳,获得10
16秒前
16秒前
livialiu发布了新的文献求助10
17秒前
唯美完成签到,获得积分10
18秒前
19秒前
年少轻狂最情深完成签到 ,获得积分10
20秒前
XD完成签到,获得积分10
20秒前
islanddd发布了新的文献求助10
21秒前
宁安发布了新的文献求助20
22秒前
zzl1111完成签到,获得积分10
22秒前
大大怪完成签到,获得积分10
25秒前
able完成签到 ,获得积分10
25秒前
清仔发布了新的文献求助20
26秒前
xentertain发布了新的文献求助10
26秒前
NexusExplorer应助ljscjth采纳,获得10
27秒前
persist发布了新的文献求助10
28秒前
28秒前
毓雅完成签到,获得积分10
30秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379604
求助须知:如何正确求助?哪些是违规求助? 2995175
关于积分的说明 8761571
捐赠科研通 2679969
什么是DOI,文献DOI怎么找? 1467749
科研通“疑难数据库(出版商)”最低求助积分说明 678775
邀请新用户注册赠送积分活动 670531