Atrial Fibrillation Detection During Sepsis: Study on MIMIC III ICU Data

心房颤动 重症监护室 医学 阈值 败血症 心电图 重症监护 样本熵 心脏病学 人工智能 内科学 模式识别(心理学) 计算机科学 重症监护医学 图像(数学)
作者
Syed Khairul Bashar,Md-Billal Hossain,Eric Ding,Allan J. Walkey,David D. McManus,Ki H. Chon
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 3124-3135 被引量:53
标识
DOI:10.1109/jbhi.2020.2995139
摘要

Sepsis is defined by life-threatening organ dysfunction during infection and is one of the leading causes of critical illness. During sepsis, there is high risk that new-onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. As a result, computer aided automated and reliable detection of new-onset AF during sepsis is crucial, especially for the critically ill patients in the intensive care unit (ICU). In this paper, a novel automated and robust two-step algorithm to detect AF from ICU patients using electrocardiogram (ECG) signals is presented. First, several statistical parameters including root mean square of successive differences, Shannon entropy, and sample entropy were calculated from the heart rate for the screening of possible AF segments. Next, Poincaré plot-based features along with P-wave characteristics were used to reduce false positive detection of AF, caused by the premature atrial and ventricular beats. A subset of the Medical Information Mart for Intensive Care (MIMIC) III database containing 198 subjects was used in this study. During the training and validation phases, both the simple thresholding as well as machine learning classifiers achieved very high segment-wise AF classification performance. Finally, we tested the performance of our proposed algorithm using two independent test data sets and compared the performance with two state-of-the-art methods. The algorithm achieved an overall 100% sensitivity, 98% specificity, 98.99% accuracy, 98% positive predictive value, and 100% negative predictive value on the subject-wise AF detection, thus showing the efficacy of our proposed algorithm in critically ill sepsis patients. The annotations of the data have been made publicly available for other investigators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助快乐小白菜采纳,获得30
1秒前
梦与叶落完成签到,获得积分10
1秒前
1秒前
个性的饼干完成签到,获得积分10
2秒前
细心的乐枫完成签到,获得积分20
3秒前
FFFFFFZX发布了新的文献求助10
3秒前
3秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
4秒前
5秒前
江蓠完成签到,获得积分10
5秒前
洁净的博涛关注了科研通微信公众号
6秒前
852应助啦啦啦采纳,获得10
6秒前
解万声完成签到,获得积分10
6秒前
黄坚仪发布了新的文献求助10
7秒前
zz完成签到,获得积分10
7秒前
南玉鹏完成签到,获得积分10
8秒前
wangyy发布了新的文献求助10
8秒前
8秒前
辛巴先生完成签到,获得积分10
8秒前
TKTK发布了新的文献求助30
9秒前
yyyfff应助西番雅采纳,获得10
9秒前
10秒前
Ding-Ding完成签到,获得积分10
11秒前
鲜于之玉完成签到,获得积分10
12秒前
13秒前
活力如冰发布了新的文献求助10
14秒前
_ban发布了新的文献求助10
14秒前
阔达东蒽完成签到,获得积分20
14秒前
南山无梅落完成签到 ,获得积分10
15秒前
科研通AI5应助anny2022采纳,获得10
15秒前
lambo发布了新的文献求助10
15秒前
狂野悟空完成签到,获得积分10
15秒前
16秒前
16秒前
丘比特应助陶陶采纳,获得10
17秒前
舒适怀寒完成签到 ,获得积分10
17秒前
17秒前
tong发布了新的文献求助10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731436
求助须知:如何正确求助?哪些是违规求助? 3275758
关于积分的说明 9993746
捐赠科研通 2991294
什么是DOI,文献DOI怎么找? 1641492
邀请新用户注册赠送积分活动 779877
科研通“疑难数据库(出版商)”最低求助积分说明 748480