Memory-Augmented Point Cloud Registration Network for Bucket Pose Estimation of the Intelligent Mining Excavator

姿势 点云 挖掘机 计算机科学 人工智能 计算机视觉 遗忘 编码器 迭代最近点 三维姿态估计 点(几何) 工程类 机械工程 操作系统 语言学 哲学 数学 几何学
作者
Yunhao Cui,Yi An,Wei Sun,Huosheng Hu,Xueguan Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:14
标识
DOI:10.1109/tim.2022.3149331
摘要

Bucket pose estimation is a key technology for the intelligent mining excavator to realize automatic excavation and loading. The existing estimation methods mainly include two categories. The sensor measurement methods install sensors to detect the bucket pose, which suffer from large cumulative error and short service life caused by strong vibrations. The traditional registration methods estimate the bucket pose by registering its point clouds with the iterative closest point method, which easily fall into a local optimum. Recently, point cloud registration networks have been studied for object pose estimation based on balanced training samples. However, since the bucket speed changes obviously during excavation, the number of bucket samples at different poses is imbalanced. As a result, point cloud registration networks will easily forget the bucket features at some poses which have small samples, also called nondominant pose features, during learning. This will reduce the accuracy of bucket pose estimation. To handle the forgetting problem caused by the sample imbalance, we propose a novel memory-augmented registration network (MARNet) for bucket pose estimation. The MARNet consists of an encoder, a dual-pose-memory module (DPMM), and a decoder. The encoder extracts the global pose features from the input point clouds. The DPMM learns and memorizes the prototypical pose features covering all the samples by using the memory units at the training phase. Then, nondominant pose features are augmented by retrieving the stored prototypical pose features at the testing phase. At last, the decoder calculates the final poses. Our method can effectively alleviate the forgetting problem and strengthen the generalization by using the DPMM. The experimental results demonstrate that our method increases the estimation accuracy of rotation and translation by at least 1.49° and 0.021 m, respectively, for the bucket poses with small samples. This contributes to the development of intelligent mining excavators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
yuyu发布了新的文献求助30
3秒前
六角完成签到,获得积分10
3秒前
Z1完成签到,获得积分10
6秒前
mhpvv完成签到,获得积分10
8秒前
深情飞丹完成签到 ,获得积分10
10秒前
在水一方应助面条采纳,获得10
10秒前
言苒完成签到,获得积分10
11秒前
天真的不凡完成签到 ,获得积分10
11秒前
鲤鱼小鸽子完成签到,获得积分10
12秒前
Dabaozi发布了新的文献求助10
13秒前
13秒前
最红的桶发布了新的文献求助10
15秒前
毛豆应助谦谦神棍采纳,获得10
15秒前
16秒前
16秒前
123456xq完成签到 ,获得积分10
16秒前
大个应助smile采纳,获得30
16秒前
17秒前
Tracy麦子发布了新的文献求助10
17秒前
18秒前
传奇3应助Vancy采纳,获得10
18秒前
李健应助范小呆采纳,获得10
19秒前
20秒前
22秒前
希望天下0贩的0应助六角采纳,获得10
23秒前
ding应助asd采纳,获得10
24秒前
不配.应助故意的安露采纳,获得10
24秒前
25秒前
26秒前
Hover发布了新的文献求助10
26秒前
最红的桶完成签到,获得积分10
27秒前
逝年发布了新的文献求助10
27秒前
29秒前
30秒前
南宫誉完成签到,获得积分10
30秒前
30秒前
言苒发布了新的文献求助10
31秒前
伶俐向薇发布了新的文献求助10
31秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Standard Specification for Polyolefin Chopped Strands for Use in Concrete 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416935
求助须知:如何正确求助?哪些是违规求助? 3018754
关于积分的说明 8884993
捐赠科研通 2705969
什么是DOI,文献DOI怎么找? 1484010
科研通“疑难数据库(出版商)”最低求助积分说明 685870
邀请新用户注册赠送积分活动 681074