亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Method for Breast Cancer Classification in the Pathology Images

过度拟合 计算机科学 Softmax函数 卷积神经网络 人工智能 深度学习 乳腺癌 模式识别(心理学) 机器学习 数字化病理学 上下文图像分类 熵(时间箭头) 预处理器 稳健性(进化) 人工神经网络 癌症 图像(数学) 医学 基因 物理 内科学 量子力学 化学 生物化学
作者
Min Liu,Lanlan Hu,Ying Tang,Chu Wang,Yu He,Chunyan Zeng,Kun Lin,Zhizi He,Wujie Huo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 5025-5032 被引量:128
标识
DOI:10.1109/jbhi.2022.3187765
摘要

Breast cancer is the most common female cancer in the world, and it poses a huge threat to women's health. There is currently promising research concerning its early diagnosis using deep learning methodologies. However, some commonly used Convolutional Neural Network (CNN) and their variations, such as AlexNet, VGGNet, GoogleNet and so on, are prone to overfitting in breast cancer classification, due to both small-scale breast pathology image datasets and overconfident softmax-cross-entropy loss. To alleviate the overfitting issue for better classification accuracy, we propose a novel framework for breast pathology classification, called the AlexNet-BC model. The model is pre-trained using the ImageNet dataset and fine-tuned using an augmented dataset. We also devise an improved cross-entropy loss function to penalize overconfident low-entropy output distributions and make the predictions suitable for uniform distributions. The proposed approach is then validated through a series of comparative experiments on BreaKHis, IDC and UCSB datasets. The experimental results show that the proposed method outperforms the state-of-the-art methods at different magnifications. Its strong robustness and generalization capabilities make it suitable for histopathology clinical computer-aided diagnosis systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
上官若男应助大晨采纳,获得10
26秒前
36秒前
NattyPoe发布了新的文献求助10
41秒前
43秒前
你好发布了新的文献求助10
46秒前
科目三应助你好采纳,获得10
51秒前
Danta发布了新的文献求助10
1分钟前
2分钟前
ziyue发布了新的文献求助10
2分钟前
2分钟前
大晨发布了新的文献求助10
2分钟前
2分钟前
river_121发布了新的文献求助10
2分钟前
Lan完成签到 ,获得积分10
2分钟前
大模型应助1123048683wm采纳,获得10
2分钟前
mxczsl完成签到,获得积分10
2分钟前
3分钟前
3分钟前
腰突患者的科研完成签到,获得积分10
3分钟前
思源应助大晨采纳,获得10
3分钟前
tianshanfeihe完成签到 ,获得积分10
4分钟前
xhsz1111完成签到 ,获得积分10
5分钟前
wakawaka完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
寂寞致幻发布了新的文献求助20
6分钟前
DONG发布了新的文献求助10
7分钟前
陶醉的烤鸡完成签到 ,获得积分10
7分钟前
7分钟前
知闲发布了新的文献求助10
7分钟前
SUNny完成签到 ,获得积分10
7分钟前
寂寞致幻完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
KYTQQ完成签到 ,获得积分10
9分钟前
小青年儿完成签到 ,获得积分10
10分钟前
星辰大海应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
Lucas应助科研通管家采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635044
求助须知:如何正确求助?哪些是违规求助? 4734672
关于积分的说明 14989679
捐赠科研通 4792784
什么是DOI,文献DOI怎么找? 2559896
邀请新用户注册赠送积分活动 1520161
关于科研通互助平台的介绍 1480221