A review of atmospheric fine particulate matters: chemical composition, source identification and their variations in Beijing

北京 微粒 污染 空气污染 特大城市 环境科学 薄雾 化学成分 采样(信号处理) 污染物 环境化学 大气科学 气象学 化学 地理 滤波器(信号处理) 中国 工程类 生物 生态学 有机化学 考古 经济 经济 地质学 电气工程
作者
Yinjie Ma,Yuhan Huang,WU Jiang-hua,E Jiaqiang,Bin Zhang,Dandan Han,Hwai Chyuan Ong
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:44 (2): 4783-4807 被引量:12
标识
DOI:10.1080/15567036.2022.2075991
摘要

Fine particulate matter (PM2.5) is a major air pollutant worldwide. Characterizing its chemical compositions and source contributions is a critical prerequisite for effective control of PM2.5 pollution. This paper systematically reviews the sampling methods, chemical compositions, and source apportionments of PM2.5. Sampling methods have significant influences on the identification of chemical compositions and source contributions, with Quartz and Teflon filters being the most widely used. Receptor models are commonly adopted for identifying the sources of PM2.5, such as positive matrix factorization, chemical mass balance, principal component analysis, and UNMIX models, which have their respective advantages and limitations that determine their applications. The variations of PM2.5 compositions and sources in the past two decades in Beijing are also reviewed, which is the political, economic, and cultural center of China and is experiencing severe haze pollution events frequently. It was found that organic matters were the largest component (28.2%) in PM2.5, followed by sulfate (15.1%) during 2004–2013, which was overtaken by nitrate (14.9%) after 2013. Each PM2.5 source demonstrated significant seasonal and annual variations due to changes in climatic conditions and anthropogenic activities. Future research on the impacts of these external factors is urgently needed. This review is expected to provide valuable advice and evidence for those fast-growing megacities like Beijing to identify and control their PM2.5-related air pollution problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
McGrady发布了新的文献求助10
2秒前
星海种花发布了新的文献求助30
5秒前
5秒前
CodeCraft应助caobing890710采纳,获得10
5秒前
6秒前
WWW发布了新的文献求助10
6秒前
Candice应助samantha采纳,获得10
7秒前
Storm完成签到,获得积分20
8秒前
皮皮鲁发布了新的文献求助10
9秒前
Owen应助Ww采纳,获得10
11秒前
乌托邦发布了新的文献求助10
11秒前
11秒前
12秒前
传奇3应助霓霓采纳,获得10
12秒前
yangwei完成签到,获得积分10
13秒前
无敌LI完成签到 ,获得积分10
14秒前
14秒前
14秒前
星海种花完成签到,获得积分10
15秒前
可爱斩完成签到,获得积分10
15秒前
23132发布了新的文献求助10
17秒前
壹零完成签到,获得积分10
18秒前
19秒前
可爱斩发布了新的文献求助10
19秒前
20秒前
ava发布了新的文献求助30
20秒前
哎哟可爱完成签到,获得积分10
21秒前
英勇新烟完成签到,获得积分10
22秒前
科研通AI2S应助samantha采纳,获得10
22秒前
汉弗里戴维完成签到 ,获得积分10
23秒前
andrele应助23132采纳,获得10
23秒前
Singularity应助23132采纳,获得10
24秒前
英俊的铭应助23132采纳,获得10
24秒前
24秒前
乌托邦完成签到,获得积分10
25秒前
一城烟雨完成签到,获得积分10
25秒前
26秒前
28秒前
sunaijia应助LIN采纳,获得10
29秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391756
求助须知:如何正确求助?哪些是违规求助? 3002700
关于积分的说明 8805473
捐赠科研通 2689433
什么是DOI,文献DOI怎么找? 1473071
科研通“疑难数据库(出版商)”最低求助积分说明 681350
邀请新用户注册赠送积分活动 674200