Transformer Network-based Reinforcement Learning Method for Power Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM)

强化学习 可扩展性 计算机科学 变压器 解耦(概率) 嵌入 人工智能 工程类 控制工程 电气工程 数据库 电压
作者
Hyunwook Park,Minsu Kim,Seongguk Kim,Keunwoo Kim,Haeyeon Kim,Taein Shin,Keeyoung Son,Boogyo Sim,Subin Kim,Seungtaek Jeong,Chulsoon Hwang,Joungho Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.15722
摘要

In this article, for the first time, we propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM). The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer impedance seen at multiple ports. An attention-based transformer network is implemented to directly parameterize decap optimization policy. The optimality performance is significantly improved since the attention mechanism has powerful expression to explore massive combinatorial space for decap assignments. Moreover, it can capture sequential relationships between the decap assignments. The computing time for optimization is dramatically reduced due to the reusable network on positions of probing ports and decap assignment candidates. This is because the transformer network has a context embedding process to capture meta-features including probing ports positions. In addition, the network is trained with randomly generated data sets. Therefore, without additional training, the trained network can solve new decap optimization problems. The computing time for training and data cost are critically decreased due to the scalability of the network. Thanks to its shared weight property, the network can adapt to a larger scale of problems without additional training. For verification, we compare the results with conventional genetic algorithm (GA), random search (RS), and all the previous RL-based methods. As a result, the proposed method outperforms in all the following aspects: optimality performance, computing time, and data efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
情怀应助Away采纳,获得10
1秒前
2秒前
blue发布了新的文献求助10
3秒前
3秒前
美好斓发布了新的文献求助30
3秒前
13679127159完成签到,获得积分20
3秒前
福祸相依完成签到,获得积分10
3秒前
3秒前
Bassvv完成签到,获得积分10
3秒前
4秒前
桑榆发布了新的文献求助10
4秒前
浮游应助润润轩轩采纳,获得10
4秒前
zz发布了新的文献求助20
4秒前
111发布了新的文献求助20
4秒前
4秒前
顺利的傲之完成签到 ,获得积分10
4秒前
4秒前
5秒前
jiajia发布了新的文献求助10
5秒前
侯佳君完成签到,获得积分20
5秒前
宇宇完成签到,获得积分10
5秒前
5秒前
烟花应助liu采纳,获得10
6秒前
ss完成签到,获得积分20
6秒前
毅然完成签到,获得积分10
6秒前
6秒前
CodeCraft应助独特的绿柳采纳,获得10
7秒前
7秒前
舒服的寻云完成签到 ,获得积分10
7秒前
科研小白发布了新的文献求助10
7秒前
背光发布了新的文献求助30
7秒前
8秒前
8秒前
fs完成签到,获得积分10
8秒前
小蘑菇应助Ferry采纳,获得10
9秒前
倪侃发布了新的文献求助10
9秒前
Dream Luminator完成签到,获得积分10
9秒前
甜美千山完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167371
求助须知:如何正确求助?哪些是违规求助? 4359251
关于积分的说明 13572619
捐赠科研通 4205717
什么是DOI,文献DOI怎么找? 2306586
邀请新用户注册赠送积分活动 1306217
关于科研通互助平台的介绍 1252763