Transformer Network-based Reinforcement Learning Method for Power Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM)

强化学习 可扩展性 计算机科学 变压器 解耦(概率) 嵌入 人工智能 工程类 控制工程 电气工程 数据库 电压
作者
Hyunwook Park,Minsu Kim,Seongguk Kim,Keunwoo Kim,Haeyeon Kim,Taein Shin,Keeyoung Son,Boogyo Sim,Subin Kim,Seungtaek Jeong,Chulsoon Hwang,Joungho Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.15722
摘要

In this article, for the first time, we propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM). The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer impedance seen at multiple ports. An attention-based transformer network is implemented to directly parameterize decap optimization policy. The optimality performance is significantly improved since the attention mechanism has powerful expression to explore massive combinatorial space for decap assignments. Moreover, it can capture sequential relationships between the decap assignments. The computing time for optimization is dramatically reduced due to the reusable network on positions of probing ports and decap assignment candidates. This is because the transformer network has a context embedding process to capture meta-features including probing ports positions. In addition, the network is trained with randomly generated data sets. Therefore, without additional training, the trained network can solve new decap optimization problems. The computing time for training and data cost are critically decreased due to the scalability of the network. Thanks to its shared weight property, the network can adapt to a larger scale of problems without additional training. For verification, we compare the results with conventional genetic algorithm (GA), random search (RS), and all the previous RL-based methods. As a result, the proposed method outperforms in all the following aspects: optimality performance, computing time, and data efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啦啦啦啦发布了新的文献求助10
刚刚
1秒前
科研狗发布了新的文献求助10
2秒前
melosy完成签到,获得积分10
3秒前
3秒前
4秒前
shadow发布了新的文献求助10
4秒前
4秒前
LaTeXer应助fd163c采纳,获得50
5秒前
5秒前
孟祥勤完成签到,获得积分10
5秒前
mingyue321发布了新的文献求助10
5秒前
Rong完成签到,获得积分10
6秒前
Cathy发布了新的文献求助10
7秒前
科目三应助人生苦短采纳,获得10
7秒前
LaTeXer给fd163c的求助进行了留言
7秒前
7秒前
不见高山完成签到,获得积分10
7秒前
阳光的无颜完成签到 ,获得积分10
8秒前
8秒前
丘比特应助有魅力的猫咪采纳,获得10
8秒前
zzz发布了新的文献求助10
9秒前
9秒前
恐龙让梨完成签到,获得积分20
9秒前
伶俐绿柏完成签到 ,获得积分10
10秒前
liuyunhao7207发布了新的文献求助10
10秒前
10秒前
勤奋旭尧发布了新的文献求助10
10秒前
11秒前
田様应助牛牛采纳,获得10
11秒前
科目三应助诺之采纳,获得10
11秒前
LIN123发布了新的文献求助10
12秒前
充电宝应助Cathy采纳,获得10
12秒前
科研一点通完成签到 ,获得积分10
12秒前
12秒前
wljn发布了新的文献求助10
12秒前
等待半烟发布了新的文献求助10
12秒前
xinlixi完成签到,获得积分0
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021