Transformer Network-based Reinforcement Learning Method for Power Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM)

强化学习 可扩展性 计算机科学 变压器 解耦(概率) 嵌入 人工智能 工程类 控制工程 电气工程 数据库 电压
作者
Hyunwook Park,Minsu Kim,Seongguk Kim,Keunwoo Kim,Haeyeon Kim,Taein Shin,Keeyoung Son,Boogyo Sim,Subin Kim,Seungtaek Jeong,Chulsoon Hwang,Joungho Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.15722
摘要

In this article, for the first time, we propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM). The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer impedance seen at multiple ports. An attention-based transformer network is implemented to directly parameterize decap optimization policy. The optimality performance is significantly improved since the attention mechanism has powerful expression to explore massive combinatorial space for decap assignments. Moreover, it can capture sequential relationships between the decap assignments. The computing time for optimization is dramatically reduced due to the reusable network on positions of probing ports and decap assignment candidates. This is because the transformer network has a context embedding process to capture meta-features including probing ports positions. In addition, the network is trained with randomly generated data sets. Therefore, without additional training, the trained network can solve new decap optimization problems. The computing time for training and data cost are critically decreased due to the scalability of the network. Thanks to its shared weight property, the network can adapt to a larger scale of problems without additional training. For verification, we compare the results with conventional genetic algorithm (GA), random search (RS), and all the previous RL-based methods. As a result, the proposed method outperforms in all the following aspects: optimality performance, computing time, and data efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的嘉懿完成签到,获得积分10
1秒前
龙傲天完成签到 ,获得积分10
1秒前
hhh发布了新的文献求助10
2秒前
小杨完成签到,获得积分10
4秒前
风华正茂完成签到,获得积分10
5秒前
康康完成签到 ,获得积分10
7秒前
柒z完成签到,获得积分10
9秒前
赘婿应助momo采纳,获得10
13秒前
油点小鳄完成签到,获得积分20
16秒前
17秒前
17秒前
桐桐应助wish采纳,获得10
18秒前
19秒前
桐桐应助百十余采纳,获得10
22秒前
义气如萱发布了新的文献求助10
22秒前
22秒前
23秒前
小二郎应助KM比比采纳,获得10
24秒前
不能吃了发布了新的文献求助10
24秒前
李健的粉丝团团长应助LJJ采纳,获得10
25秒前
26秒前
27秒前
体贴绝音发布了新的文献求助10
27秒前
28秒前
丘比特应助sakegeda采纳,获得10
30秒前
31秒前
wish发布了新的文献求助10
31秒前
不能吃了完成签到,获得积分10
32秒前
32秒前
33秒前
35秒前
好滴捏发布了新的文献求助10
37秒前
37秒前
pyt完成签到,获得积分10
38秒前
39秒前
英俊的铭应助不安的紫翠采纳,获得10
40秒前
41秒前
情怀应助SherlockHe采纳,获得10
41秒前
41秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173