Transformer Network-based Reinforcement Learning Method for Power Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM)

强化学习 可扩展性 计算机科学 变压器 解耦(概率) 嵌入 人工智能 工程类 控制工程 电气工程 数据库 电压
作者
Hyunwook Park,Minsu Kim,Seongguk Kim,Keunwoo Kim,Haeyeon Kim,Taein Shin,Keeyoung Son,Boogyo Sim,Subin Kim,Seungtaek Jeong,Chulsoon Hwang,Joungho Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.15722
摘要

In this article, for the first time, we propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM). The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer impedance seen at multiple ports. An attention-based transformer network is implemented to directly parameterize decap optimization policy. The optimality performance is significantly improved since the attention mechanism has powerful expression to explore massive combinatorial space for decap assignments. Moreover, it can capture sequential relationships between the decap assignments. The computing time for optimization is dramatically reduced due to the reusable network on positions of probing ports and decap assignment candidates. This is because the transformer network has a context embedding process to capture meta-features including probing ports positions. In addition, the network is trained with randomly generated data sets. Therefore, without additional training, the trained network can solve new decap optimization problems. The computing time for training and data cost are critically decreased due to the scalability of the network. Thanks to its shared weight property, the network can adapt to a larger scale of problems without additional training. For verification, we compare the results with conventional genetic algorithm (GA), random search (RS), and all the previous RL-based methods. As a result, the proposed method outperforms in all the following aspects: optimality performance, computing time, and data efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
angel完成签到,获得积分10
7秒前
chen完成签到 ,获得积分10
11秒前
洋洋爱吃枣完成签到 ,获得积分10
11秒前
17秒前
17秒前
饱满一手完成签到 ,获得积分10
20秒前
阿俊1212发布了新的文献求助10
23秒前
26秒前
从别后忆相逢完成签到 ,获得积分10
29秒前
32秒前
白华苍松发布了新的文献求助10
39秒前
Milton_z完成签到 ,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
草莓熊1215完成签到 ,获得积分10
1分钟前
1分钟前
芽衣完成签到 ,获得积分10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
huvy完成签到 ,获得积分10
1分钟前
Smoiy完成签到 ,获得积分10
2分钟前
GuangboXia完成签到,获得积分10
2分钟前
星辰大海应助AA采纳,获得10
2分钟前
上善若水呦完成签到 ,获得积分10
2分钟前
完美世界应助栀初采纳,获得10
2分钟前
2分钟前
栀初发布了新的文献求助10
3分钟前
beplayer1完成签到 ,获得积分10
3分钟前
sirius完成签到 ,获得积分10
3分钟前
3分钟前
元谷雪应助出金多多采纳,获得10
3分钟前
huangzsdy完成签到,获得积分10
3分钟前
scitester完成签到,获得积分10
3分钟前
飞翔的企鹅完成签到,获得积分10
3分钟前
沉默的冬寒完成签到 ,获得积分10
3分钟前
研友_LmgOaZ完成签到 ,获得积分0
3分钟前
3分钟前
海孩子完成签到,获得积分10
3分钟前
AA发布了新的文献求助10
4分钟前
杨一完成签到 ,获得积分10
4分钟前
cyskdsn完成签到 ,获得积分10
4分钟前
NexusExplorer应助AA采纳,获得10
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139630
求助须知:如何正确求助?哪些是违规求助? 2790514
关于积分的说明 7795460
捐赠科研通 2446980
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176