Transformer Network-based Reinforcement Learning Method for Power Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM)

强化学习 可扩展性 计算机科学 变压器 解耦(概率) 嵌入 人工智能 工程类 控制工程 电气工程 数据库 电压
作者
Hyunwook Park,Minsu Kim,Seongguk Kim,Keunwoo Kim,Haeyeon Kim,Taein Shin,Keeyoung Son,Boogyo Sim,Subin Kim,Seungtaek Jeong,Chulsoon Hwang,Joungho Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.15722
摘要

In this article, for the first time, we propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM). The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer impedance seen at multiple ports. An attention-based transformer network is implemented to directly parameterize decap optimization policy. The optimality performance is significantly improved since the attention mechanism has powerful expression to explore massive combinatorial space for decap assignments. Moreover, it can capture sequential relationships between the decap assignments. The computing time for optimization is dramatically reduced due to the reusable network on positions of probing ports and decap assignment candidates. This is because the transformer network has a context embedding process to capture meta-features including probing ports positions. In addition, the network is trained with randomly generated data sets. Therefore, without additional training, the trained network can solve new decap optimization problems. The computing time for training and data cost are critically decreased due to the scalability of the network. Thanks to its shared weight property, the network can adapt to a larger scale of problems without additional training. For verification, we compare the results with conventional genetic algorithm (GA), random search (RS), and all the previous RL-based methods. As a result, the proposed method outperforms in all the following aspects: optimality performance, computing time, and data efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张羽涵完成签到,获得积分20
刚刚
所所应助小布丁采纳,获得10
刚刚
zuoyueyue发布了新的文献求助10
1秒前
糊涂图发布了新的文献求助10
3秒前
3秒前
zfcaabbcc发布了新的文献求助10
3秒前
4秒前
体贴的嵩发布了新的文献求助10
4秒前
lllllljmjmjm完成签到,获得积分10
4秒前
喜喜完成签到,获得积分10
5秒前
5秒前
小青椒应助浮浮世世采纳,获得50
5秒前
5秒前
6秒前
科研通AI6应助ned采纳,获得10
7秒前
小马甲应助通~采纳,获得30
9秒前
ddfighting发布了新的文献求助10
10秒前
喜喜发布了新的文献求助10
10秒前
易达发布了新的文献求助10
10秒前
11秒前
12秒前
毛毛球完成签到,获得积分10
12秒前
左手树发布了新的文献求助10
12秒前
13秒前
wanci应助体贴的嵩采纳,获得10
13秒前
餐巾纸完成签到 ,获得积分10
13秒前
14秒前
14秒前
善学以致用应助Lyy采纳,获得10
15秒前
qft完成签到,获得积分10
16秒前
17秒前
pancake应助粳咪采纳,获得30
17秒前
luo发布了新的文献求助10
18秒前
娜娜子发布了新的文献求助10
19秒前
20秒前
20秒前
科研通AI5应助易达采纳,获得30
20秒前
浮游应助qft采纳,获得10
20秒前
orixero应助张nmky采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156169
求助须知:如何正确求助?哪些是违规求助? 4351736
关于积分的说明 13550023
捐赠科研通 4194853
什么是DOI,文献DOI怎么找? 2300694
邀请新用户注册赠送积分活动 1300671
关于科研通互助平台的介绍 1245726