Transformer Network-based Reinforcement Learning Method for Power Distribution Network (PDN) Optimization of High Bandwidth Memory (HBM)

强化学习 可扩展性 计算机科学 变压器 解耦(概率) 嵌入 人工智能 工程类 控制工程 电气工程 数据库 电压
作者
Hyunwook Park,Minsu Kim,Seongguk Kim,Keunwoo Kim,Haeyeon Kim,Taein Shin,Keeyoung Son,Boogyo Sim,Subin Kim,Seungtaek Jeong,Chulsoon Hwang,Joungho Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2203.15722
摘要

In this article, for the first time, we propose a transformer network-based reinforcement learning (RL) method for power distribution network (PDN) optimization of high bandwidth memory (HBM). The proposed method can provide an optimal decoupling capacitor (decap) design to maximize the reduction of PDN self- and transfer impedance seen at multiple ports. An attention-based transformer network is implemented to directly parameterize decap optimization policy. The optimality performance is significantly improved since the attention mechanism has powerful expression to explore massive combinatorial space for decap assignments. Moreover, it can capture sequential relationships between the decap assignments. The computing time for optimization is dramatically reduced due to the reusable network on positions of probing ports and decap assignment candidates. This is because the transformer network has a context embedding process to capture meta-features including probing ports positions. In addition, the network is trained with randomly generated data sets. Therefore, without additional training, the trained network can solve new decap optimization problems. The computing time for training and data cost are critically decreased due to the scalability of the network. Thanks to its shared weight property, the network can adapt to a larger scale of problems without additional training. For verification, we compare the results with conventional genetic algorithm (GA), random search (RS), and all the previous RL-based methods. As a result, the proposed method outperforms in all the following aspects: optimality performance, computing time, and data efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Huang_Liuying采纳,获得10
刚刚
9420完成签到,获得积分10
1秒前
隐形曼青应助hunajx采纳,获得10
1秒前
sasasas发布了新的文献求助10
2秒前
HN洪完成签到,获得积分10
2秒前
莫言发布了新的文献求助10
2秒前
shuoshuo发布了新的文献求助10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
无曲应助科研通管家采纳,获得20
3秒前
3秒前
酷酷问梅完成签到,获得积分10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
野狗拉丽发布了新的文献求助10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
Koalas应助科研通管家采纳,获得20
3秒前
浮游应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
Lilith应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
反杀闰土的猹完成签到 ,获得积分10
5秒前
6秒前
7秒前
酷波er应助qinkoko采纳,获得10
7秒前
ybigwhite应助猛犸象冲冲冲采纳,获得20
8秒前
完美世界应助坚持坚持采纳,获得10
8秒前
热心冷亦完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123189
求助须知:如何正确求助?哪些是违规求助? 4327690
关于积分的说明 13485306
捐赠科研通 4161935
什么是DOI,文献DOI怎么找? 2281094
邀请新用户注册赠送积分活动 1282577
关于科研通互助平台的介绍 1221658