Retracted: DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency

清脆的 计算机科学 人工智能 Cas9 学习迁移 任务(项目管理) 基因组编辑 引导RNA 深度学习 机器学习 吞吐量 计算生物学 生物 基因 遗传学 电信 经济 管理 无线
作者
Shai Elkayam,Yaron Orenstein
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (Supplement_1): i161-i168 被引量:8
标识
DOI:10.1093/bioinformatics/btac218
摘要

CRISPR/Cas9 technology has been revolutionizing the field of gene editing in recent years. Guide RNAs (gRNAs) enable Cas9 proteins to target specific genomic loci for editing. However, editing efficiency varies between gRNAs. Thus, computational methods were developed to predict editing efficiency for any gRNA of interest. High-throughput datasets of Cas9 editing efficiencies were produced to train machine-learning models to predict editing efficiency. However, these high-throughput datasets have low correlation with functional and endogenous editing. Another difficulty arises from the fact that functional and endogenous editing efficiency is more difficult to measure, and as a result, functional and endogenous datasets are too small to train accurate machine-learning models on. We developed DeepCRISTL, a deep-learning model to predict the on-target efficiency given a gRNA sequence. DeepCRISTL takes advantage of high-throughput datasets to learn general patterns of gRNA on-target editing efficiency, and then uses transfer learning (TL) to fine-tune the model and fit it to the functional and endogenous prediction task. We pre-trained the DeepCRISTL model on more than 150 000 gRNAs, produced through the DeepHF study as a high-throughput dataset of three Cas9 enzymes. We improved the DeepHF model by multi-task and ensemble techniques and achieved state-of-the-art results over each of the three enzymes: up to 0.89 in Spearman correlation between predicted and measured on-target efficiencies. To fine-tune model weights to predict on-target efficiency of functional or endogenous datasets, we tested several TL approaches, with gradual learning being the overall best performer, both when pre-trained on DeepHF and when pre-trained on CRISPROn, another high-throughput dataset. DeepCRISTL outperformed state-of-the-art methods on all functional and endogenous datasets. Using saliency maps, we identified and compared the important features learned by the model in each dataset. We believe DeepCRISTL will improve prediction performance in many other CRISPR/Cas9 editing contexts by leveraging TL to utilize both high-throughput datasets, and smaller and more biologically relevant datasets, such as functional and endogenous datasets. DeepCRISTL is available via github.com/OrensteinLab/DeepCRISTL. Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fanmo完成签到 ,获得积分10
1秒前
沉默烨霖发布了新的文献求助10
1秒前
1。发布了新的文献求助10
2秒前
www发布了新的文献求助30
2秒前
森距离关注了科研通微信公众号
2秒前
3秒前
lll关闭了lll文献求助
4秒前
5秒前
sytbb完成签到,获得积分10
5秒前
可爱的函函应助狂飙的蛋采纳,获得10
5秒前
Xin发布了新的文献求助10
6秒前
JamesPei应助贾败采纳,获得10
7秒前
陈点点完成签到,获得积分10
8秒前
9秒前
冷静无声完成签到 ,获得积分10
9秒前
9秒前
WenJunGu完成签到,获得积分10
10秒前
李健应助LLLLLL采纳,获得10
10秒前
10秒前
Orange应助时光里采纳,获得10
12秒前
华仔应助syyw2021采纳,获得30
12秒前
javeeen完成签到,获得积分10
13秒前
SYLH应助doin采纳,获得10
14秒前
15秒前
今后应助Xin采纳,获得10
15秒前
15秒前
lll发布了新的文献求助10
17秒前
从容万恶发布了新的文献求助10
17秒前
17秒前
jiaayyin发布了新的文献求助20
18秒前
笨蛋美女发布了新的文献求助10
18秒前
18秒前
jingcheng完成签到,获得积分10
19秒前
CodeCraft应助lalaly1123456采纳,获得10
21秒前
冷静无声发布了新的文献求助10
22秒前
852应助快乐星球采纳,获得10
22秒前
LLLLLL发布了新的文献求助10
23秒前
样子发布了新的文献求助30
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA handbook of personality and social psychology, Volume 2: Group processes 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3653959
求助须知:如何正确求助?哪些是违规求助? 3217802
关于积分的说明 9719149
捐赠科研通 2925513
什么是DOI,文献DOI怎么找? 1602326
邀请新用户注册赠送积分活动 755182
科研通“疑难数据库(出版商)”最低求助积分说明 733318