纳米孔
纳米技术
纳米生物技术
纳米孔测序
纳米医学
DNA
生物分子
材料科学
计算生物学
化学
DNA测序
生物
纳米颗粒
生物化学
作者
Farzin Haque,Jinghong Li,Hai‐Chen Wu,Xing‐Jie Liang,Peixuan Guo
出处
期刊:Nano Today
[Elsevier]
日期:2013-02-01
卷期号:8 (1): 56-74
被引量:374
标识
DOI:10.1016/j.nantod.2012.12.008
摘要
Sensitivity and specificity are two most important factors to take into account for molecule sensing, chemical detection and disease diagnosis. A perfect sensitivity is to reach the level where a single molecule can be detected. An ideal specificity is to reach the level where the substance can be detected in the presence of many contaminants. The rapidly progressing nanopore technology is approaching this threshold. A wide assortment of biomotors and cellular pores in living organisms perform diverse biological functions. The elegant design of these transportation machineries has inspired the development of single molecule detection based on modulations of the individual current blockage events. The dynamic growth of nanotechnology and nanobiotechnology has stimulated rapid advances in the study of nanopore based instrumentation over the last decade, and inspired great interest in sensing of single molecules including ions, nucleotides, enantiomers, drugs, and polymers such as PEG, RNA, DNA, and polypeptides. This sensing technology has been extended to medical diagnostics and third generation high throughput DNA sequencing. This review covers current nanopore detection platforms including both biological pores and solid state counterparts. Several biological nanopores have been studied over the years, but this review will focus on the three best characterized systems including α-hemolysin and MspA, both containing a smaller channel for the detection of single-strand DNA, as well as bacteriophage phi29 DNA packaging motor connector that contains a larger channel for the passing of double stranded DNA. The advantage and disadvantage of each system are compared; their current and potential applications in nanomedicine, biotechnology, and nanotechnology are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI