Concept2Robot: Learning manipulation concepts from instructions and human demonstrations

计算机科学 任务(项目管理) 人工智能 机器人 动觉学习 遥操作 强化学习 人机交互 一般化 机器学习 心理学 工程类 数学 数学分析 发展心理学 系统工程
作者
Lin Shao,Toki Migimatsu,Qiang Zhang,Karen Yang,Jeannette Bohg
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:40 (12-14): 1419-1434 被引量:26
标识
DOI:10.1177/02783649211046285
摘要

We aim to endow a robot with the ability to learn manipulation concepts that link natural language instructions to motor skills. Our goal is to learn a single multi-task policy that takes as input a natural language instruction and an image of the initial scene and outputs a robot motion trajectory to achieve the specified task. This policy has to generalize over different instructions and environments. Our insight is that we can approach this problem through learning from demonstration by leveraging large-scale video datasets of humans performing manipulation actions. Thereby, we avoid more time-consuming processes such as teleoperation or kinesthetic teaching. We also avoid having to manually design task-specific rewards. We propose a two-stage learning process where we first learn single-task policies through reinforcement learning. The reward is provided by scoring how well the robot visually appears to perform the task. This score is given by a video-based action classifier trained on a large-scale human activity dataset. In the second stage, we train a multi-task policy through imitation learning to imitate all the single-task policies. In extensive simulation experiments, we show that the multi-task policy learns to perform a large percentage of the 78 different manipulation tasks on which it was trained. The tasks are of greater variety and complexity than previously considered robot manipulation tasks. We show that the policy generalizes over variations of the environment. We also show examples of successful generalization over novel but similar instructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WDW完成签到,获得积分10
刚刚
狂野白梅完成签到,获得积分10
刚刚
xixi789完成签到,获得积分10
刚刚
Zengyuan完成签到,获得积分10
1秒前
超级小飞侠完成签到 ,获得积分10
2秒前
3秒前
传奇3应助AFsumo采纳,获得10
4秒前
顾矜应助YC采纳,获得10
4秒前
楚寅完成签到 ,获得积分10
4秒前
咖喱鸡完成签到,获得积分10
7秒前
科研菜鸟完成签到,获得积分10
8秒前
粗心的邴完成签到 ,获得积分10
8秒前
欣喜的薯片完成签到 ,获得积分10
10秒前
Messi发布了新的文献求助10
11秒前
amongferns完成签到,获得积分10
11秒前
9羊关注了科研通微信公众号
12秒前
12秒前
12秒前
圆月弯刀完成签到 ,获得积分10
15秒前
愉快的宛秋完成签到,获得积分10
16秒前
AFsumo发布了新的文献求助10
17秒前
飞飛飝完成签到,获得积分10
17秒前
诚心的冰露完成签到,获得积分10
17秒前
卢浩完成签到,获得积分10
17秒前
啦啦啦发布了新的文献求助10
19秒前
全圆佑的猫猫完成签到,获得积分10
19秒前
Mono完成签到,获得积分10
20秒前
zhangguo完成签到 ,获得积分10
20秒前
单纯的戒指完成签到 ,获得积分10
20秒前
vinh完成签到,获得积分10
21秒前
Sherry完成签到,获得积分10
23秒前
灵巧汉堡完成签到 ,获得积分10
26秒前
123完成签到,获得积分10
26秒前
27秒前
啦啦啦完成签到,获得积分10
29秒前
小白一点点完成签到 ,获得积分10
30秒前
30秒前
大理学子完成签到,获得积分10
30秒前
阔达的无心应助司阔林采纳,获得10
30秒前
羊and羊完成签到,获得积分10
31秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339325
求助须知:如何正确求助?哪些是违规求助? 2967232
关于积分的说明 8629016
捐赠科研通 2646705
什么是DOI,文献DOI怎么找? 1449319
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660216