水田
农学
温室气体
环境科学
野外试验
人类受精
稻草
产量(工程)
亚热带
作物
作物产量
动物科学
生物
生态学
冶金
材料科学
作者
Zhisheng Yao,Rui Wang,Xunhua Zheng,Baoling Mei,Zaixing Zhou,Baohua Xie,Haibo Dong,Chunyan Liu,Shenghui Han,Zhongjun Xu,Klaus Butterbach‐Bahl,Jianguo Zhu
摘要
Abstract Increasing levels of atmospheric CO 2 are expected to enhance crop yields and alter soil greenhouse gas fluxes from rice paddies. While elevated CO 2 ( ) effects on CH 4 emissions from rice paddies have been studied in some detail, little is known how might affect N 2 O fluxes or yield‐scaled emissions. Here, we report on a multi‐site, multi‐year in‐situ FACE (free‐air CO 2 enrichment) study, aiming to determine N 2 O fluxes and crop yields from Chinese subtropical rice systems as affected by . In this study, we tested various N fertilization and residue addition treatments, with rice being grown under either (+200 μmol/mol) or ambient control. Across the six site‐years, rice straw and grain yields under were increased by 9%–40% for treatments fertilized with ≥150 kg N/ha, while seasonal N 2 O emissions were decreased by 23%–73%. Consequently, yield‐scaled N 2 O emissions were significantly lower under . For treatments receiving insufficient fertilization (≤125 kg N/ha), however, no significant effects on N 2 O emissions were observed. The mitigating effect of upon N 2 O emissions is closely associated with plant N uptake and a reduction of soil N availability. Nevertheless, increases in yield‐scaled N 2 O emissions with increasing N surplus suggests that N surplus is a useful indicator for assessing N 2 O emissions from rice paddies. Our findings indicate that with rising atmospheric CO 2 soil N 2 O emissions from rice paddies will decrease, given that the farmers’ N fertilization is usually sufficient for crop growth. The expected decrease in N 2 O emissions was calculated to compensate 24% of the simultaneously observed increase in CH 4 emissions under . This shows that for an agronomic and environmental assessment of effects on rice systems, not only CH 4 emissions, but also N 2 O fluxes and yield‐scaled emissions need to be considered for identifying most climate‐friendly and economically viable options for future rice production.
科研通智能强力驱动
Strongly Powered by AbleSci AI