叙述性评论
主题(计算)
背景(考古学)
集合(抽象数据类型)
系统回顾
叙述的
主题(文档)
工程伦理学
管理科学
计算机科学
心理学
数据科学
认识论
梅德林
政治学
图书馆学
语言学
万维网
历史
工程类
考古
程序设计语言
法学
心理治疗师
哲学
作者
Justin Paul,Altaf Merchant,Yogesh K. Dwivedi,Gregory M. Rose
标识
DOI:10.1016/j.jbusres.2021.05.005
摘要
Classic literature reviews help advance a subject area. In this article, we discuss the types of review articles and what kinds of review articles are likely to be impactful. In the case of theme- based reviews, we suggest that framework-based reviews that use a framework such as TCCM (Theory, Context, Characteristics, Methods) are generally more impactful than other types of reviews such as bibliometric reviews or narrative reviews. Reviews that develop classic theories are also very useful and insightful. Overall, successful review articles identify research gaps and set future research agenda.
科研通智能强力驱动
Strongly Powered by AbleSci AI