Deep Learning to Classify Intraductal Papillary Mucinous Neoplasms Using Magnetic Resonance Imaging

医学 发育不良 磁共振成像 胰腺 置信区间 放射科 接收机工作特性 深度学习 卷积神经网络 内科学 胃肠病学 人工智能 计算机科学
作者
Juan E. Corral,Sarfaraz Hussein,Pujan Kandel,Candice W. Bolan,Ulaş Bağcı,Michael B. Wallace
出处
期刊:Pancreas [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (6): 805-810 被引量:63
标识
DOI:10.1097/mpa.0000000000001327
摘要

Objective This study aimed to evaluate a deep learning protocol to identify neoplasia in intraductal papillary mucinous neoplasia (IPMN) in comparison to current radiographic criteria. Methods A computer-aided framework was designed using convolutional neural networks to classify IPMN. The protocol was applied to magnetic resonance images of the pancreas. Features of IPMN were classified according to American Gastroenterology Association guidelines, Fukuoka guidelines, and the new deep learning protocol. Sensitivity and specificity were calculated using surgically resected cystic lesions or healthy controls. Results Of 139 cases, 58 (42%) were male; mean (standard deviation) age was 65.3 (11.9) years. Twenty-two percent had normal pancreas; 34%, low-grade dysplasia; 14%, high-grade dysplasia; and 29%, adenocarcinoma. The deep learning protocol sensitivity and specificity to detect dysplasia were 92% and 52%, respectively. Sensitivity and specificity to identify high-grade dysplasia or cancer were 75% and 78%, respectively. Diagnostic performance was similar to radiologic criteria. Areas under the receiver operating curves (95% confidence interval) were 0.76 (0.70–0.84) for American Gastroenterology Association, 0.77 (0.70–0.85) for Fukuoka, and 0.78 (0.71–0.85) for the deep learning protocol ( P = 0.90). Conclusions The deep learning protocol showed accuracy comparable to current radiographic criteria. Computer-aided frameworks could be implemented as aids for radiologists to identify high-risk IPMN.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榨菜发布了新的文献求助10
3秒前
失眠的诗蕊应助lily336699采纳,获得20
6秒前
7秒前
7秒前
siriuslee99完成签到,获得积分10
8秒前
牛牛不怕困难完成签到 ,获得积分10
8秒前
chaotianjiao完成签到 ,获得积分10
10秒前
善学以致用应助pgg采纳,获得10
10秒前
11秒前
科研通AI2S应助海的呼唤采纳,获得10
12秒前
liuliu发布了新的文献求助10
13秒前
15秒前
一一一发布了新的文献求助10
15秒前
晚晴完成签到 ,获得积分10
17秒前
lily336699完成签到,获得积分10
19秒前
Wfmmm完成签到,获得积分10
21秒前
ZYH发布了新的文献求助10
22秒前
23秒前
23秒前
123完成签到,获得积分10
23秒前
失眠的诗蕊应助lily336699采纳,获得20
23秒前
24秒前
Xiaoshen发布了新的文献求助10
28秒前
聪明的秋天完成签到 ,获得积分10
28秒前
123驳回了田様应助
28秒前
jlwang发布了新的文献求助10
29秒前
温柔踏歌完成签到,获得积分10
31秒前
甜甜圈完成签到 ,获得积分10
32秒前
温柔踏歌发布了新的文献求助10
34秒前
36秒前
39秒前
星辰大海应助ZYH采纳,获得10
40秒前
McGrady发布了新的文献求助10
41秒前
44秒前
大模型应助聪明大米采纳,获得10
44秒前
Lucas应助沉睡的大马猴采纳,获得10
45秒前
45秒前
小马甲应助xhy采纳,获得10
47秒前
yang完成签到 ,获得积分10
48秒前
小蒋发布了新的文献求助10
50秒前
高分求助中
Востребованный временем 2500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372380
求助须知:如何正确求助?哪些是违规求助? 2990165
关于积分的说明 8738955
捐赠科研通 2673515
什么是DOI,文献DOI怎么找? 1464568
科研通“疑难数据库(出版商)”最低求助积分说明 677612
邀请新用户注册赠送积分活动 669000