计算机科学
安全性令牌
背景(考古学)
可扩展性
可制造性设计
领域(数学分析)
相似性(几何)
人工智能
人工神经网络
上下文模型
国家(计算机科学)
跟踪(教育)
数据挖掘
算法
计算机网络
工程类
机械工程
心理学
古生物学
数学分析
教育学
数学
数据库
对象(语法)
图像(数学)
生物
作者
Abibulla Atawulla,Xi Zhou,Yating Yang,Bo Ma,Fengyi Yang
标识
DOI:10.1109/icassp49357.2023.10095518
摘要
There are a large number of candidate values shared among slots in multi-domain dialogue state tracking (DST). The existing span prediction-based DST methods generally adopt slot-independent value extraction architecture, which ignore the value sharing. Besides, the slot-independent design leads to poor scalability. In this paper, we propose a Slot-shared Span Prediction based Network (SSNet) with a general value extraction module for all slots to tackle these problems. To ensure that the value extraction module is able to distinguish different slots, we introduce a Dynamic Fusion Mechanism (DFM) to extract different slot-aware features. DFM plays the routing role, highlighting different dialogue context tokens for different slots. Specifically, DFM firstly calculates similarity matrixes between the dialogue context and different slots, and then determines important dialogue context token with respect to each slot. Experimental results demonstrate that SSNet outperforms the existing start-of-the-art models on both MultiWOZ 2.1 and MultiWOZ 2.2 datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI