Modeling collective motion for fish schooling via multi-agent reinforcement learning

强化学习 运动(物理) 集体运动 基于Agent的模型 计算机科学 人工智能 人工神经网络 过程(计算) 集体行为 钢筋 先验与后验 动力学(音乐) 心理学 社会心理学 社会学 认识论 操作系统 哲学 教育学 人类学
作者
Xin Wang,Shuo Liu,Yifan Yu,Shengzhi Yue,Ying Liu,Fumin Zhang,Yuanshan Lin
出处
期刊:Ecological Modelling [Elsevier]
卷期号:477: 110259-110259 被引量:8
标识
DOI:10.1016/j.ecolmodel.2022.110259
摘要

Complex collective motion patterns can emerge from very simple local interactions among individual agents. However, it is still unclear how and why the interactions among individuals lead to the emergence of collective motion. Modeling is an effective way to understand the mechanisms that govern collective animal motions. In this work, to avoid imposing fixed sets of rules on collective motion models a priori as classical approaches do, we propose a new method of modeling collective motion for fish schooling via multi-agent reinforcement learning. We model each fish individual as an artificial learning agent, whose policy is acquired by using mean field Q-learning (MFQ). The observation of each fish agent is represented as a multi-channel image, where each channel describes a different feature, such as an agent's position or an agent's orientation. The policy of an agent is approximated with a neural network trained with the MFQ algorithm, during which, agents are rewarded (or penalized) according to the number of neighbors and consecutive collisions between individuals. We study the dynamics of collective motion that emerge from the learned policy. The experimental results show that the learned policy can produce collective motion in groups of various sizes. In addition, three different collective motion patterns observed in nature emerged during the training process. The learned policy can help us gain new insight into how and why individual interactions lead to collective motion. This study also demonstrates that multi-agent reinforcement learning has great potential to be a new approach for analysis and modeling of collective motion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
薛定谔的猫爱摸鱼完成签到,获得积分10
1秒前
Belinda发布了新的文献求助10
1秒前
hhhc发布了新的文献求助10
1秒前
77发布了新的文献求助10
2秒前
小蓝人发布了新的文献求助10
2秒前
sb完成签到,获得积分10
3秒前
3秒前
wuludie应助斩封采纳,获得10
4秒前
小灰灰发布了新的文献求助10
4秒前
小宁完成签到,获得积分10
4秒前
你快睡吧发布了新的文献求助10
4秒前
陈政豪发布了新的文献求助10
5秒前
5秒前
小马甲应助XXXXY采纳,获得10
5秒前
LZT关闭了LZT文献求助
6秒前
所所应助后来采纳,获得10
7秒前
zz完成签到,获得积分10
7秒前
song发布了新的文献求助10
7秒前
lizibelle完成签到,获得积分20
7秒前
passby完成签到,获得积分10
7秒前
桐桐应助清仔采纳,获得10
7秒前
恰逢发布了新的文献求助10
7秒前
muyassar完成签到,获得积分10
8秒前
传奇3应助51采纳,获得30
8秒前
8秒前
上官若男应助51采纳,获得30
8秒前
完美世界应助勤奋的静竹采纳,获得10
8秒前
小蓝人完成签到,获得积分10
9秒前
9秒前
9秒前
苏子墨完成签到,获得积分10
10秒前
10秒前
枫asaki发布了新的文献求助10
10秒前
友人Y完成签到,获得积分10
10秒前
11秒前
11秒前
喜久福完成签到,获得积分10
12秒前
拼搏依玉完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762