Modeling collective motion for fish schooling via multi-agent reinforcement learning

强化学习 运动(物理) 集体运动 基于Agent的模型 计算机科学 人工智能 人工神经网络 过程(计算) 集体行为 钢筋 先验与后验 动力学(音乐) 心理学 社会心理学 社会学 认识论 操作系统 哲学 教育学 人类学
作者
Xin Wang,Shuo Liu,Yifan Yu,Shengzhi Yue,Ying Liu,Fumin Zhang,Yuanshan Lin
出处
期刊:Ecological Modelling [Elsevier]
卷期号:477: 110259-110259 被引量:5
标识
DOI:10.1016/j.ecolmodel.2022.110259
摘要

Complex collective motion patterns can emerge from very simple local interactions among individual agents. However, it is still unclear how and why the interactions among individuals lead to the emergence of collective motion. Modeling is an effective way to understand the mechanisms that govern collective animal motions. In this work, to avoid imposing fixed sets of rules on collective motion models a priori as classical approaches do, we propose a new method of modeling collective motion for fish schooling via multi-agent reinforcement learning. We model each fish individual as an artificial learning agent, whose policy is acquired by using mean field Q-learning (MFQ). The observation of each fish agent is represented as a multi-channel image, where each channel describes a different feature, such as an agent's position or an agent's orientation. The policy of an agent is approximated with a neural network trained with the MFQ algorithm, during which, agents are rewarded (or penalized) according to the number of neighbors and consecutive collisions between individuals. We study the dynamics of collective motion that emerge from the learned policy. The experimental results show that the learned policy can produce collective motion in groups of various sizes. In addition, three different collective motion patterns observed in nature emerged during the training process. The learned policy can help us gain new insight into how and why individual interactions lead to collective motion. This study also demonstrates that multi-agent reinforcement learning has great potential to be a new approach for analysis and modeling of collective motion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111111发布了新的文献求助10
2秒前
Sevi完成签到,获得积分10
2秒前
曹博完成签到,获得积分10
3秒前
YZX完成签到 ,获得积分10
3秒前
single完成签到,获得积分10
4秒前
Mia完成签到,获得积分10
4秒前
所所应助陆浩学化学采纳,获得10
4秒前
5秒前
Runtofuture完成签到,获得积分10
5秒前
111发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助邹鹏采纳,获得10
6秒前
调研昵称发布了新的文献求助10
8秒前
single发布了新的文献求助50
10秒前
10秒前
ECKART完成签到,获得积分10
11秒前
KYT完成签到,获得积分10
11秒前
ECKART发布了新的文献求助10
14秒前
奋斗凝蝶发布了新的文献求助10
15秒前
15秒前
刘可心完成签到,获得积分10
16秒前
顾矜应助和平星采纳,获得10
16秒前
诗恋菲宇完成签到,获得积分10
17秒前
高兴荔枝完成签到,获得积分10
20秒前
frank完成签到,获得积分10
20秒前
fsf完成签到,获得积分10
21秒前
丘比特应助Xxx采纳,获得10
24秒前
小二郎应助小陈采纳,获得10
24秒前
25秒前
大个应助高兴荔枝采纳,获得10
26秒前
wanci应助珺儿采纳,获得10
26秒前
研友_Z60x5L完成签到 ,获得积分10
26秒前
27秒前
28秒前
乐乐乐乐乐乐应助大华采纳,获得10
29秒前
1234发布了新的文献求助10
31秒前
乔心发布了新的文献求助10
33秒前
今后应助kokopa采纳,获得10
34秒前
森sen完成签到 ,获得积分10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155908
求助须知:如何正确求助?哪些是违规求助? 2807136
关于积分的说明 7871997
捐赠科研通 2465497
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905