亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling collective motion for fish schooling via multi-agent reinforcement learning

强化学习 运动(物理) 集体运动 基于Agent的模型 计算机科学 人工智能 人工神经网络 过程(计算) 集体行为 钢筋 先验与后验 动力学(音乐) 心理学 社会心理学 社会学 认识论 操作系统 哲学 教育学 人类学
作者
Xin Wang,Shuo Liu,Yifan Yu,Shengzhi Yue,Ying Liu,Fumin Zhang,Yuanshan Lin
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:477: 110259-110259 被引量:8
标识
DOI:10.1016/j.ecolmodel.2022.110259
摘要

Complex collective motion patterns can emerge from very simple local interactions among individual agents. However, it is still unclear how and why the interactions among individuals lead to the emergence of collective motion. Modeling is an effective way to understand the mechanisms that govern collective animal motions. In this work, to avoid imposing fixed sets of rules on collective motion models a priori as classical approaches do, we propose a new method of modeling collective motion for fish schooling via multi-agent reinforcement learning. We model each fish individual as an artificial learning agent, whose policy is acquired by using mean field Q-learning (MFQ). The observation of each fish agent is represented as a multi-channel image, where each channel describes a different feature, such as an agent's position or an agent's orientation. The policy of an agent is approximated with a neural network trained with the MFQ algorithm, during which, agents are rewarded (or penalized) according to the number of neighbors and consecutive collisions between individuals. We study the dynamics of collective motion that emerge from the learned policy. The experimental results show that the learned policy can produce collective motion in groups of various sizes. In addition, three different collective motion patterns observed in nature emerged during the training process. The learned policy can help us gain new insight into how and why individual interactions lead to collective motion. This study also demonstrates that multi-agent reinforcement learning has great potential to be a new approach for analysis and modeling of collective motion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lf发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
bbdd2334发布了新的文献求助10
6秒前
7秒前
11秒前
李健的小迷弟应助bbdd2334采纳,获得10
13秒前
14秒前
忧伤的风华完成签到,获得积分10
20秒前
thanhvader999完成签到,获得积分10
20秒前
小乘号子发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
小马甲应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
轻松的惜芹应助白日梦采纳,获得20
25秒前
26秒前
悦耳的沛岚完成签到,获得积分10
26秒前
29秒前
Xiaowen发布了新的文献求助10
29秒前
123发布了新的文献求助10
34秒前
学习使人头大完成签到 ,获得积分10
36秒前
jyy应助坚定灯泡采纳,获得10
38秒前
41秒前
3080完成签到 ,获得积分10
43秒前
小芭乐完成签到 ,获得积分10
44秒前
48秒前
50秒前
50秒前
sunshihaoya发布了新的文献求助10
52秒前
占那个完成签到 ,获得积分10
53秒前
cos发布了新的文献求助10
55秒前
Bond完成签到 ,获得积分10
56秒前
58秒前
852应助sunshihaoya采纳,获得10
1分钟前
1分钟前
辉哥发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520700
关于积分的说明 11204482
捐赠科研通 3257320
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613