Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis

生物信息学 有效载荷(计算) 计算生物学 药品 癌症研究 生物 计算机科学 基因 药理学 遗传学 计算机网络 网络数据包
作者
Umesh Kathad,Neha Biyani,Raniero L. Peru y Colón De Portugal,Jianli Zhou,Harry Kochat,Kishor Bhatia
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (8): e0308604-e0308604
标识
DOI:10.1371/journal.pone.0308604
摘要

Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma’s proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR ® ). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI 50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钇铯完成签到,获得积分10
刚刚
何处西风无酒旗完成签到,获得积分10
刚刚
哦啦啦完成签到,获得积分10
1秒前
2秒前
____(fg)完成签到 ,获得积分10
2秒前
LLL完成签到 ,获得积分10
2秒前
搜集达人应助心想事陈采纳,获得10
2秒前
芒果味猕猴桃完成签到,获得积分10
3秒前
万能图书馆应助vivianzhang采纳,获得10
4秒前
哦啦啦发布了新的文献求助10
4秒前
5秒前
传奇3应助一头傻元芳采纳,获得10
5秒前
6秒前
edtaa完成签到 ,获得积分10
8秒前
8秒前
科研通AI2S应助jlj采纳,获得10
9秒前
wanci应助杨志坚采纳,获得10
10秒前
xiaostou完成签到,获得积分10
11秒前
王博士完成签到,获得积分10
11秒前
张皓123发布了新的文献求助10
11秒前
我要发十篇sci完成签到 ,获得积分10
11秒前
捉迷藏完成签到,获得积分10
12秒前
李友健完成签到 ,获得积分10
12秒前
ksr8888应助漠悲漠痛采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
jiangru发布了新的文献求助10
16秒前
17秒前
17秒前
叶世玉发布了新的文献求助10
17秒前
楼迎荷发布了新的文献求助10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168208
求助须知:如何正确求助?哪些是违规求助? 2819559
关于积分的说明 7927087
捐赠科研通 2479402
什么是DOI,文献DOI怎么找? 1320787
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458