Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis

生物信息学 有效载荷(计算) 计算生物学 药品 癌症研究 生物 计算机科学 基因 药理学 遗传学 计算机网络 网络数据包
作者
Umesh Kathad,Neha Biyani,Raniero L. Peru y Colón De Portugal,Jianli Zhou,Harry Kochat,Kishor Bhatia
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (8): e0308604-e0308604
标识
DOI:10.1371/journal.pone.0308604
摘要

Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma’s proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR ® ). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI 50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
善学以致用应助薛华倩采纳,获得10
4秒前
huqingtao完成签到,获得积分10
4秒前
了了完成签到,获得积分10
4秒前
5秒前
5秒前
666完成签到,获得积分10
6秒前
9秒前
10秒前
星辰大海应助樱桃窝窝头采纳,获得10
11秒前
258369完成签到,获得积分10
12秒前
13秒前
14秒前
Sunwenrui发布了新的文献求助10
15秒前
薛华倩发布了新的文献求助10
19秒前
白白SAMA123发布了新的文献求助10
19秒前
19秒前
昏睡的飞机完成签到,获得积分10
19秒前
20秒前
21秒前
23秒前
miaojuly发布了新的文献求助10
23秒前
共享精神应助追寻筮采纳,获得10
23秒前
24秒前
莫歌完成签到 ,获得积分10
24秒前
2889580752发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
杨冠文发布了新的文献求助10
25秒前
HOME发布了新的文献求助10
27秒前
liz_应助努力工作的人采纳,获得10
28秒前
Lycerdoctor发布了新的文献求助10
28秒前
东瓜魔法师完成签到,获得积分10
28秒前
杨冠文完成签到,获得积分10
30秒前
30秒前
Owen应助肖肖采纳,获得10
31秒前
han应助薛华倩采纳,获得10
32秒前
Rational完成签到,获得积分10
32秒前
祁i应助liuzengzhang666采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035