Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis

生物信息学 有效载荷(计算) 计算生物学 药品 癌症研究 生物 计算机科学 基因 药理学 遗传学 计算机网络 网络数据包
作者
Umesh Kathad,Neha Biyani,Raniero L. Peru y Colón De Portugal,Jianli Zhou,Harry Kochat,Kishor Bhatia
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (8): e0308604-e0308604
标识
DOI:10.1371/journal.pone.0308604
摘要

Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma’s proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR ® ). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI 50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智灵薇完成签到,获得积分10
2秒前
GERRARD完成签到,获得积分10
2秒前
笨笨以莲发布了新的文献求助20
5秒前
小广完成签到,获得积分10
5秒前
田様应助大橙子采纳,获得10
8秒前
8秒前
SYLH应助Echo_1995采纳,获得10
10秒前
吕小布完成签到,获得积分10
11秒前
骑驴追火箭完成签到,获得积分10
13秒前
baomingqiu完成签到 ,获得积分10
13秒前
乐观寻雪完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
复杂勒完成签到,获得积分10
16秒前
17秒前
bird完成签到,获得积分10
18秒前
AaronDP发布了新的文献求助50
19秒前
terryok完成签到,获得积分10
20秒前
Cll完成签到 ,获得积分10
20秒前
聪明的宛菡完成签到,获得积分10
21秒前
CNYDNZB完成签到 ,获得积分10
21秒前
xxj完成签到 ,获得积分10
21秒前
芊芊完成签到 ,获得积分10
22秒前
yar应助bluesky采纳,获得10
22秒前
海人完成签到 ,获得积分10
23秒前
SY15732023811完成签到 ,获得积分10
25秒前
李建勋完成签到,获得积分10
25秒前
科研通AI2S应助一路芬芳采纳,获得10
25秒前
黄花完成签到 ,获得积分10
26秒前
刘珍荣完成签到,获得积分10
27秒前
27秒前
紫金之巅完成签到 ,获得积分10
27秒前
Gang完成签到,获得积分10
28秒前
29秒前
29秒前
30秒前
CYYDNDB完成签到 ,获得积分10
30秒前
粿粿一定行完成签到 ,获得积分10
31秒前
32秒前
战战完成签到,获得积分10
33秒前
xlk2222完成签到,获得积分10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022