TC-GCN: Triple cross-attention and graph convolutional network for traffic forecasting

计算机科学 图形 智能交通系统 注意力网络 数据挖掘 流量(计算机网络) 交通拥挤 人工智能 机器学习 理论计算机科学 计算机网络 运输工程 工程类
作者
Lei Wang,Deke Guo,Huaming Wu,Keqiu Li,Wei Yu
出处
期刊:Information Fusion [Elsevier]
卷期号:105: 102229-102229 被引量:9
标识
DOI:10.1016/j.inffus.2024.102229
摘要

With the rapid development of urbanization, increasingly more data are being acquired by intelligent transportation systems (ITSs), which is of great significance for traffic flow forecasting. Efficient intelligent traffic management systems (TMSs) depend on accurately forecasting traffic flows as well as reasonably researching and judging traffic states. However, the current prediction models used in transportation forecasting tasks are traditional temporal- and spatial-dimensional prediction approaches. Especially when faced with road channelization, the numbers of lanes and lane types increase significantly, causing significant increases in the dimensionality and complexity of traffic data, and research models utilizing the cross-interaction relationships among multiple dimensions have not been considered. This has led to unsatisfactory prediction results in complex traffic environments. Therefore, it is very important to explore the exchange–correlation of complex dimensional data and the mining of hidden attributes. This paper presents a method for performing multidimensional cross-attention and spatiotemporal graph convolution. This method fully considers cross-information and constructs an attention cross-view between every pair of dimensions among the channel, time and space domains to model the cross-dimensional dependencies of traffic data. We innovatively propose a triple cross-attention and graph convolutional network (TC-GCN), which can achieve further improved traffic forecasting performance. The TC-GCN is verified on two real-world traffic datasets, namely, METR-LA and PEMS-BAY, and the experimental results are compared with those of multiple advanced baselines, showing that the proposed approach outperforms most of these baselines, which proves the effectiveness of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keepory86完成签到,获得积分10
刚刚
Ricky发布了新的文献求助10
刚刚
刚刚
蔻蔻完成签到,获得积分10
刚刚
怎么说发布了新的文献求助10
2秒前
你好呀发布了新的文献求助10
2秒前
夏青荷发布了新的文献求助10
2秒前
搜集达人应助糜厉采纳,获得10
2秒前
棒棒糖发布了新的文献求助10
3秒前
丘比特应助李克杨采纳,获得10
3秒前
3秒前
义气天川完成签到,获得积分10
4秒前
JonyiCheng发布了新的文献求助10
5秒前
5秒前
superluckc发布了新的文献求助10
5秒前
5秒前
minmin完成签到,获得积分10
5秒前
5秒前
6秒前
cookie发布了新的文献求助10
6秒前
哦啦啦发布了新的文献求助10
6秒前
小小杨发布了新的文献求助10
6秒前
KK发布了新的文献求助10
7秒前
带善人完成签到,获得积分10
7秒前
赘婿应助cola采纳,获得10
8秒前
wu完成签到,获得积分20
8秒前
paulmichael完成签到,获得积分10
8秒前
Caesar完成签到,获得积分10
8秒前
徐rl发布了新的文献求助10
8秒前
无奈秋荷完成签到,获得积分10
9秒前
littlestar发布了新的文献求助10
9秒前
10秒前
11秒前
谷粱发布了新的文献求助10
11秒前
U2发布了新的文献求助10
11秒前
丘比特应助风云采纳,获得10
12秒前
小磊完成签到,获得积分10
12秒前
研友_VZG7GZ应助wu采纳,获得10
13秒前
13秒前
糜厉发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543260
求助须知:如何正确求助?哪些是违规求助? 3120651
关于积分的说明 9343550
捐赠科研通 2818657
什么是DOI,文献DOI怎么找? 1549757
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713078