ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness Prediction

代码库 计算机科学 机器学习 一套 水准点(测量) 集合(抽象数据类型) 比例(比率) 人工智能 数据挖掘 数据科学 源代码 物理 考古 大地测量学 量子力学 历史 程序设计语言 地理 操作系统
作者
Pascal Notin,Aaron W. Kollasch,Daniel P. Ritter,Lood van Niekerk,Steffan B. Paul,Hansen Spinner,Nathan Rollins,Ada Y. Shaw,Ruben Weitzman,Jonathan Frazer,Mafalda Dias,Dinko Franceschi,Rose Orenbuch,Yarin Gal,Debora S. Marks
标识
DOI:10.1101/2023.12.07.570727
摘要

Predicting the effects of mutations in proteins is critical to many applications, from understanding genetic disease to designing novel proteins that can address our most pressing challenges in climate, agriculture and healthcare. Despite a surge in machine learning-based protein models to tackle these questions, an assessment of their respective benefits is challenging due to the use of distinct, often contrived, experimental datasets, and the variable performance of models across different protein families. Addressing these challenges requires scale. To that end we introduce ProteinGym, a large-scale and holistic set of benchmarks specifically designed for protein fitness prediction and design. It encompasses both a broad collection of over 250 standardized deep mutational scanning assays, spanning millions of mutated sequences, as well as curated clinical datasets providing high-quality expert annotations about mutation effects. We devise a robust evaluation framework that combines metrics for both fitness prediction and design, factors in known limitations of the underlying experimental methods, and covers both zero-shot and supervised settings. We report the performance of a diverse set of over 70 high-performing models from various subfields (eg., alignment-based, inverse folding) into a unified benchmark suite. We open source the corresponding codebase, datasets, MSAs, structures, model predictions and develop a user-friendly website that facilitates data access and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jj完成签到,获得积分10
刚刚
kingwill应助褚香旋采纳,获得20
1秒前
DocRyan发布了新的文献求助10
1秒前
科研通AI5应助执着续采纳,获得10
2秒前
缓慢的小土豆完成签到,获得积分10
2秒前
2秒前
feifei完成签到,获得积分10
2秒前
科研通AI5应助weiwei采纳,获得10
5秒前
6秒前
6秒前
lovesci发布了新的文献求助10
7秒前
7秒前
曾经发布了新的文献求助10
9秒前
科研通AI6应助孙孙孙采纳,获得30
9秒前
11秒前
大力发布了新的文献求助10
12秒前
在水一方应助1111采纳,获得10
12秒前
yy完成签到,获得积分10
12秒前
12秒前
666发布了新的文献求助10
13秒前
乐轩发布了新的文献求助10
14秒前
zz_1997完成签到 ,获得积分10
14秒前
李健应助wenxianxiazai123采纳,获得10
15秒前
一只猪发布了新的文献求助10
16秒前
秀丽的犀牛完成签到,获得积分10
16秒前
桃博完成签到,获得积分10
17秒前
严三笑发布了新的文献求助10
18秒前
18秒前
完美世界应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得30
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
虚幻访冬应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
xxfsx应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207759
求助须知:如何正确求助?哪些是违规求助? 4385596
关于积分的说明 13657629
捐赠科研通 4244284
什么是DOI,文献DOI怎么找? 2328727
邀请新用户注册赠送积分活动 1326487
关于科研通互助平台的介绍 1278577