ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness Prediction

代码库 计算机科学 机器学习 一套 水准点(测量) 集合(抽象数据类型) 比例(比率) 人工智能 数据挖掘 数据科学 源代码 物理 考古 大地测量学 量子力学 历史 程序设计语言 地理 操作系统
作者
Pascal Notin,Aaron W. Kollasch,Daniel P. Ritter,Lood van Niekerk,Steffan B. Paul,Hansen Spinner,Nathan Rollins,Ada Y. Shaw,Ruben Weitzman,Jonathan Frazer,Mafalda Dias,Dinko Franceschi,Rose Orenbuch,Yarin Gal,Debora S. Marks
标识
DOI:10.1101/2023.12.07.570727
摘要

Predicting the effects of mutations in proteins is critical to many applications, from understanding genetic disease to designing novel proteins that can address our most pressing challenges in climate, agriculture and healthcare. Despite a surge in machine learning-based protein models to tackle these questions, an assessment of their respective benefits is challenging due to the use of distinct, often contrived, experimental datasets, and the variable performance of models across different protein families. Addressing these challenges requires scale. To that end we introduce ProteinGym, a large-scale and holistic set of benchmarks specifically designed for protein fitness prediction and design. It encompasses both a broad collection of over 250 standardized deep mutational scanning assays, spanning millions of mutated sequences, as well as curated clinical datasets providing high-quality expert annotations about mutation effects. We devise a robust evaluation framework that combines metrics for both fitness prediction and design, factors in known limitations of the underlying experimental methods, and covers both zero-shot and supervised settings. We report the performance of a diverse set of over 70 high-performing models from various subfields (eg., alignment-based, inverse folding) into a unified benchmark suite. We open source the corresponding codebase, datasets, MSAs, structures, model predictions and develop a user-friendly website that facilitates data access and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助cis2014采纳,获得10
刚刚
针尖上的王子完成签到,获得积分10
2秒前
2秒前
踏实天亦发布了新的文献求助10
2秒前
MTF发布了新的文献求助10
3秒前
4秒前
4秒前
SciGPT应助晚来天欲雪采纳,获得10
5秒前
cccyyy发布了新的文献求助10
5秒前
Sunsets完成签到 ,获得积分10
5秒前
6秒前
ZXB应助随梦而飞采纳,获得30
7秒前
脑洞疼应助CCC采纳,获得10
7秒前
梓歆发布了新的文献求助10
7秒前
lxzk11110000完成签到,获得积分10
8秒前
9秒前
powell发布了新的文献求助20
9秒前
wts完成签到,获得积分10
9秒前
CodeCraft应助liuxuying采纳,获得10
10秒前
卡卡发布了新的文献求助30
10秒前
12秒前
追寻易云发布了新的文献求助10
12秒前
13秒前
bkagyin应助MTF采纳,获得10
13秒前
背后书芹发布了新的文献求助10
15秒前
15秒前
maox1aoxin应助lxzk11110000采纳,获得30
16秒前
17秒前
没假期发布了新的文献求助10
18秒前
忍蛙发布了新的文献求助10
18秒前
lc完成签到,获得积分10
19秒前
kryptonite发布了新的文献求助10
19秒前
小龙仔123应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
19秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975953
求助须知:如何正确求助?哪些是违规求助? 3520269
关于积分的说明 11201866
捐赠科研通 3256738
什么是DOI,文献DOI怎么找? 1798436
邀请新用户注册赠送积分活动 877578
科研通“疑难数据库(出版商)”最低求助积分说明 806464