Parallel Bayesian probabilistic integration for structural reliability analysis with small failure probabilities

后验概率 差异(会计) 贝叶斯概率 概率逻辑 计算机科学 重要性抽样 可靠性(半导体) 贝叶斯推理 算法 人工智能 数学 统计 蒙特卡罗方法 功率(物理) 物理 会计 量子力学 业务
作者
Zhuo Hu,Chao Dang,Lei Wang,Michael Beer
出处
期刊:Structural Safety [Elsevier]
卷期号:106: 102409-102409 被引量:6
标识
DOI:10.1016/j.strusafe.2023.102409
摘要

Bayesian active learning methods have emerged for structural reliability analysis and shown more attractive features than existing active learning methods. However, it remains a challenge to actively learn the failure probability by fully exploiting its posterior statistics. In this study, a novel Bayesian active learning method termed 'Parallel Bayesian Probabilistic Integration' (PBPI) is proposed for structural reliability analysis, especially when involving small failure probabilities. A pseudo posterior variance of the failure probability is first heuristically proposed for providing a pragmatic uncertainty measure over the failure probability. The variance amplified importance sampling is modified in a sequential manner to allow the estimations of posterior mean and pseudo posterior variance with a large sample population. A learning function derived from the pseudo posterior variance and a stopping criterion associated with the pseudo posterior coefficient of variance of the failure probability are then presented to enable active learning. In addition, a new adaptive multi-point selection method is developed to identify multiple sample points at each iteration without the need to predefine the number, thereby allowing parallel computing. The effectiveness of the proposed PBPI method is verified by investigating four numerical examples, including a turbine blade structural model and a transmission tower structure. Results indicate that the proposed method is capable of estimating small failure probabilities with superior accuracy and efficiency over several other existing active learning reliability methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
666完成签到 ,获得积分10
1秒前
Ushuaia发布了新的文献求助10
2秒前
小东西完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
sobergod完成签到 ,获得积分10
5秒前
科研通AI2S应助王小明采纳,获得10
5秒前
8秒前
8秒前
达瓦里氏完成签到 ,获得积分10
8秒前
和谐为上完成签到,获得积分10
9秒前
在水一方应助是个i人采纳,获得10
10秒前
xiao67er完成签到,获得积分10
10秒前
10秒前
杳鸢应助夏天采纳,获得10
10秒前
ding发布了新的文献求助10
12秒前
化学位移值完成签到 ,获得积分10
12秒前
13秒前
华仔应助王小明采纳,获得10
13秒前
13秒前
乐乐应助顺利毕业采纳,获得10
13秒前
wangcan发布了新的文献求助10
14秒前
Misaki发布了新的文献求助10
14秒前
嵇丹雪发布了新的文献求助10
15秒前
15秒前
甜甜凉面发布了新的文献求助10
15秒前
16秒前
17秒前
merrylake完成签到 ,获得积分10
18秒前
木风2023发布了新的文献求助10
19秒前
19秒前
clvv发布了新的文献求助10
20秒前
2鱼发布了新的文献求助10
20秒前
ding完成签到,获得积分10
21秒前
丘比特应助顺利毕业采纳,获得10
23秒前
Jasper应助灵舒采纳,获得10
23秒前
甜甜凉面完成签到,获得积分10
23秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206512
求助须知:如何正确求助?哪些是违规求助? 2856028
关于积分的说明 8101930
捐赠科研通 2521035
什么是DOI,文献DOI怎么找? 1354032
科研通“疑难数据库(出版商)”最低求助积分说明 641916
邀请新用户注册赠送积分活动 613132