黄曲霉
安普克
串扰
MAPK/ERK通路
化学
细胞生物学
激酶
生物化学
蛋白激酶A
生物
食品科学
物理
光学
作者
Longxue Ma,Junning Ma,Yuanyuan Tian,Li Xu,Bowen Tai,Fuguo Xing
标识
DOI:10.1021/acs.jafc.4c01229
摘要
Aflatoxins (AFs), highly carcinogenic natural products, are produced by the secondary metabolism of fungi such as Aspergillus flavus. Essential for the fungi to respond to environmental changes and aflatoxin synthesis, the pheromone mitogen-activated protein kinase (MAPK) is a potential regulator of aflatoxin biosynthesis. However, the mechanism by which pheromone MAPK regulates aflatoxin biosynthesis is not clear. Here, we showed Gal83, a new target of Fus3, and identified the pheromone Fus3-MAPK signaling pathway as a regulator of the Snf1/AMPK energy-sensing pathway modulating aflatoxins synthesis substrates. The screening for Fus3 target proteins identified the β subunit of Snf1/AMPK complexes using tandem affinity purification and multiomics. This subunit physically interacted with Fus3 both in vivo and in vitro and received phosphorylation from Fus3. Although the transcript levels of aflatoxin synthesis genes were not noticeably downregulated in both gal83 and fus3 deletion mutant strains, the levels of aflatoxin B1 and its synthesis substrates and gene expression levels of primary metabolizing enzymes were significantly reduced. This suggests that both the Fus3-MAPK and Snf1/AMPK pathways respond to energy signals. In conclusion, all the evidence unlocks a novel pathway of Fus3-MAPK to regulate AFs synthesis substrates by cross-talking with the Snf1/AMPK complexes.
科研通智能强力驱动
Strongly Powered by AbleSci AI