亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating Rehabilitation Progress Using Motion Features Identified by Machine Learning

康复 运动(物理) 计算机科学 人工智能 物理医学与康复 机器学习 心理学 医学 神经科学
作者
Lei Lü,Ying Tan,Marlena Klaic,Mary P. Galea,Fary Khan,Annie Oliver,Iven Mareels,Denny Oetomo,Erying Zhao
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (4): 1417-1428 被引量:17
标识
DOI:10.1109/tbme.2020.3036095
摘要

Evaluating progress throughout a patient's rehabilitation episode is critical for determining the effectiveness of the selected treatments and is an essential ingredient in personalised and evidence-based rehabilitation practice. The evaluation process is complex due to the inherently large human variations in motor recovery and the limitations of commonly used clinical measurement tools. Information recorded during a robot-assisted rehabilitation process can provide an effective means to continuously quantitatively assess movement performance and rehabilitation progress. However, selecting appropriate motion features for rehabilitation evaluation has always been challenging. This paper exploits unsupervised feature learning techniques to reduce the complexity of building the evaluation model of patients' progress. A new feature learning technique is developed to select the most significant features from a large amount of kinematic features measured from robotics, providing clinically useful information to health practitioners with reduction of modeling complexity. A novel indicator that uses monotonicity and trendability is proposed to evaluate kinematic features. The data used to develop the feature selection technique consist of kinematic data from robot-aided rehabilitation for a population of stroke patients. The selected kinematic features allow for human variations across a population of patients as well as over the sequence of rehabilitation sessions. The study is based on data records pertaining to 41 stroke patients using three different robot assisted exercises for upper limb rehabilitation. Consistent with the literature, the results indicate that features based on movement smoothness are the best measures among 17 kinematic features suitable to evaluate rehabilitation progress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪猪完成签到,获得积分10
3秒前
酷炫的善愁关注了科研通微信公众号
13秒前
15秒前
汉堡包应助科研通管家采纳,获得10
17秒前
随机子应助科研通管家采纳,获得10
17秒前
尼克发布了新的文献求助10
20秒前
尼克完成签到,获得积分10
26秒前
fengfenghao完成签到 ,获得积分10
35秒前
归海一刀完成签到,获得积分10
1分钟前
1分钟前
Xxxudi发布了新的文献求助30
1分钟前
思源应助沉迷学习采纳,获得10
1分钟前
Xxxudi发布了新的文献求助10
2分钟前
jyy应助科研通管家采纳,获得30
2分钟前
华仔应助耍酷芙蓉采纳,获得10
2分钟前
牛少辉发布了新的文献求助10
2分钟前
烟花应助长不出的菌采纳,获得10
2分钟前
Daisykiller完成签到,获得积分20
2分钟前
香蕉觅云应助傅夜山采纳,获得10
3分钟前
3分钟前
3分钟前
Xxxudi发布了新的文献求助10
3分钟前
潇潇洒洒完成签到 ,获得积分10
3分钟前
Momo发布了新的文献求助10
3分钟前
gy完成签到,获得积分10
3分钟前
zqq完成签到,获得积分0
3分钟前
牛少辉关注了科研通微信公众号
3分钟前
3分钟前
三井库里完成签到,获得积分10
3分钟前
三井库里发布了新的文献求助10
3分钟前
3分钟前
桑榆未晚完成签到,获得积分10
3分钟前
3分钟前
桑榆未晚发布了新的文献求助10
3分钟前
3分钟前
4分钟前
青川发布了新的文献求助10
4分钟前
Xulun完成签到,获得积分10
4分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171530
求助须知:如何正确求助?哪些是违规求助? 2822407
关于积分的说明 7939160
捐赠科研通 2483017
什么是DOI,文献DOI怎么找? 1322894
科研通“疑难数据库(出版商)”最低求助积分说明 633795
版权声明 602627