化学
放射免疫疗法
分子生物学
结合
抗原
抗体
单克隆抗体
免疫学
生物
数学分析
数学
作者
G. B. Adams,Calvin Shaller,Lara L. Chappell,Chao‐Liang Wu,Eva Horak,Heidi Simmons,Samuel Litwin,J.D. Marks,LM Weiner,Martin W. Brechbiel
标识
DOI:10.1016/s0969-8051(00)00103-7
摘要
Intravenously administered anti-tumor single-chain Fv (scFv) and diabody molecules exhibit rapid clearance kinetics and accumulation in tumors that express their cognate antigen. In an attempt to fit the rate of isotope decay to the timing of delivery and duration of tumor retention, anti-HER2/neu CHX-A" DTPA-C6.5K-A scFv and diabody conjugates were labeled with the alpha-particle emitter (213)Bi (t(1/2) = 47 min). Radioimmunotherapy studies employing 0.64, 0.35, or 0.15 microCi of (213)Bi-labeled C6.5K-A diabody or 1.1, 0.6, or 0. 3 microCi of (213)Bi-labeled C6.5K-A scFv were performed in nude mice bearing early, established SK-OV-3 tumors. Only the 0.3 microCi dose of (213)Bi-labeled C6.5K-A scFv resulted in both acceptable toxicity and a reduction in tumor growth rate. The specificity of the anti-tumor effects was determined by comparing the efficacy of treatment with 0.3 and 0.15 microCi doses of (213)Bi-labeled C6.5K-A scFv and (213)Bi-labeled NM3E2 (an irrelevant scFv) in nude mice bearing large established tumors. The 0.3 microCi dose of (213)Bi on both the C6.5K-A and NM3E2 scFvs resulted in similar anti-tumor effects (p = 0.46) indicating that antigen-specific targeting was not a factor. This suggests that the physical half-life of (213)Bi may be too brief to be effectively paired with systemically-administered diabody or scFv molecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI