Automated guided vehicle dispatching and routing integration via digital twin with deep reinforcement learning

强化学习 拖延 计算机科学 马尔可夫决策过程 布线(电子设计自动化) 能源消耗 过程(计算) 分布式计算 工业工程 实时计算 工程类 人工智能 作业车间调度 马尔可夫过程 嵌入式系统 统计 数学 电气工程 操作系统
作者
Lixiang Zhang,Chen Yang,Yan Yan,Ze Cai,Yaoguang Hu
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:72: 492-503 被引量:17
标识
DOI:10.1016/j.jmsy.2023.12.008
摘要

The manufacturing industry has witnessed a significant shift towards high flexibility and adaptability, driven by personalized demands. However, automated guided vehicle (AGV) dispatching optimization is still challenging when considering AGV routing with the spatial-temporal and kinematics constraints in intelligent production logistics systems, limiting the evolving industry applications. Against this backdrop, this paper presents a digital twin (DT)-enhanced deep reinforcement learning-based optimization framework to integrate AGV dispatching and routing at both horizontal and vertical levels. First, the proposed framework leverages a digital twin model of the shop floor to provide a simulation environment that closely mimics the actual manufacturing process, enabling the AGV dispatching agent to be trained in a realistic setting, thus reducing the risk of finding unrealistic solutions under specific shop-floor settings and preventing time-consuming trial-and-error processes. Then, the AGV dispatching with the routing problem is modeled as a Markov Decision Process to optimize tardiness and energy consumption. An improved dueling double deep Q network algorithm with count-based exploration is developed to learn a better-dispatching policy by interacting with the high-fidelity DT model that integrates a static path planning agent using A* and a dynamic collision avoidance agent using a deep deterministic policy gradient to prevent the congestion and deadlock. Experimental results show that our method outperforms four state-of-the-art methods with shorter tardiness, lower energy consumption, and better stability. The proposed method provides significant potential to utilize the digital twin and reinforcement learning in the decision-making and optimization of manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smy发布了新的文献求助10
刚刚
刚刚
HHHH完成签到,获得积分10
1秒前
1秒前
FuuKa完成签到,获得积分10
1秒前
1秒前
322小弟发布了新的文献求助10
2秒前
2秒前
plutosmall发布了新的文献求助10
2秒前
xuhongxiang完成签到,获得积分10
3秒前
3秒前
科研通AI5应助大可采纳,获得10
3秒前
程旭发布了新的文献求助10
3秒前
科研通AI5应助DDB采纳,获得10
4秒前
Keming完成签到,获得积分10
4秒前
不合格的科研er完成签到,获得积分10
4秒前
木木发布了新的文献求助10
4秒前
lesyeuxdexx完成签到 ,获得积分10
5秒前
YY完成签到,获得积分10
6秒前
大个应助济民财采纳,获得10
7秒前
大梦想家发布了新的文献求助10
7秒前
阳光冷松发布了新的文献求助10
7秒前
丘比特应助owlhealth采纳,获得10
7秒前
Cat应助呜啦啦啦采纳,获得10
9秒前
10秒前
11秒前
希望天下0贩的0应助Lucas采纳,获得30
11秒前
深情安青应助Rsoup采纳,获得10
12秒前
大个应助木木采纳,获得10
12秒前
领导范儿应助Yacon采纳,获得30
12秒前
发粪涂墙完成签到,获得积分10
13秒前
13秒前
易水完成签到 ,获得积分10
14秒前
15秒前
seven发布了新的文献求助10
15秒前
白白圣诞发布了新的文献求助10
16秒前
puhui完成签到,获得积分10
16秒前
ginny完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627