Engineering novel scaffolds for specific HDAC11 inhibitors against metabolic diseases exploiting deep learning, virtual screening, and molecular dynamics simulations

计算生物学 HDAC11型 组蛋白脱乙酰基酶 虚拟筛选 代谢稳定性 药物发现 化学 生物 生物化学 组蛋白 体外 基因
作者
Jiali Li,XiaoDie Chen,Rong Liu,Xingyu Liu,Mao Shu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:262: 129810-129810 被引量:3
标识
DOI:10.1016/j.ijbiomac.2024.129810
摘要

The prevalence of metabolic diseases is increasing at a frightening rate year by year. The burgeoning development of deep learning enables drug design to be more efficient, selective, and structurally novel. The critical relevance of Histone deacetylase 11 (HDAC11) to the pathogenesis of several metabolic diseases makes it a promising drug target for curbing metabolic disorders. The present study aims to design new specific HDAC11 inhibitors for the treatment of metabolic diseases. Deep learning was performed to learn the properties of existing HDAC11 inhibitors and yield a novel compound library containing 23,122 molecules. Subsequently, the compound library was screened by ADMET properties, Lipinski & Veber rules, traditional machine classification models, and molecular docking, and 10 compounds were screened as candidate HDAC11 inhibitors. The stability of the 10 new molecules was further evaluated by deploying RMSD, RMSF, MM/GBSA, free energy landscape mapping, and PCA analysis in molecular dynamics simulations. As a result, ten compounds, Cpd_17556, Cpd_2184, Cpd_8907, Cpd_7771, Cpd_14959, Cpd_7108, Cpd_12383, Cpd_13153, Cpd_14500and Cpd_21811, were characterized as good HDAC11 inhibitors and are expected to be promising drug candidates for metabolic disorders, and further in vitro, in vivo and clinical trials to demonstrate in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wdw2236完成签到 ,获得积分10
刚刚
Lyue发布了新的文献求助10
刚刚
刚刚
脑洞疼应助123采纳,获得10
1秒前
果果发布了新的文献求助10
1秒前
Ava应助搁浅采纳,获得10
2秒前
科研通AI2S应助xiaodaiduyan采纳,获得10
2秒前
打打应助文英俊采纳,获得10
2秒前
汉堡包应助彩虹小滑稽采纳,获得10
3秒前
weishuhan完成签到 ,获得积分10
4秒前
逆蝶完成签到,获得积分10
4秒前
Kay发布了新的文献求助10
4秒前
shangqinwang发布了新的文献求助10
4秒前
4秒前
6秒前
细心妙旋完成签到 ,获得积分10
7秒前
soleil发布了新的文献求助10
11秒前
阳光完成签到,获得积分10
11秒前
SXR完成签到,获得积分10
11秒前
NexusExplorer应助哈哈采纳,获得10
12秒前
神勇乐安完成签到,获得积分10
12秒前
1236应助果果采纳,获得10
12秒前
kk完成签到,获得积分20
15秒前
Owen应助123mmmm采纳,获得10
16秒前
1226完成签到,获得积分10
20秒前
shangqinwang完成签到,获得积分10
21秒前
21秒前
weilanhaian完成签到 ,获得积分10
21秒前
LAN完成签到,获得积分10
22秒前
24秒前
linbei应助盛夏吹过晚风采纳,获得10
24秒前
穷且爱睡不坠青云之志完成签到,获得积分10
26秒前
27秒前
淡淡的小蘑菇完成签到 ,获得积分10
29秒前
30秒前
Hhhhh完成签到,获得积分10
30秒前
31秒前
32秒前
123发布了新的文献求助10
35秒前
冰棍完成签到,获得积分10
35秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214629
求助须知:如何正确求助?哪些是违规求助? 2863260
关于积分的说明 8137795
捐赠科研通 2529453
什么是DOI,文献DOI怎么找? 1363698
科研通“疑难数据库(出版商)”最低求助积分说明 643908
邀请新用户注册赠送积分活动 616451