协议(科学)
计算机科学
集合(抽象数据类型)
直线(几何图形)
人工智能
机器学习
计算生物学
生物
程序设计语言
数学
几何学
医学
病理
替代医学
作者
Gyuri Kim,Sewon Lee,Eli Levy Karin,Hyunbin Kim,Yoshitaka Moriwaki,Sergey Ovchinnikov,Martin Steinegger,Milot Mirdita
出处
期刊:Research Square - Research Square
日期:2023-12-01
被引量:8
标识
DOI:10.21203/rs.3.pex-2490/v1
摘要
Abstract Since its public release in 2021, AlphaFold2 (AF2) has made investigating biological questions, using predicted protein structures of single monomers or full complexes, a common practice. ColabFold-AF2 is an open-source Jupyter Notebook inside Google Colaboratory and a command-line tool, which makes it easy to use AF2, while exposing its advanced options. ColabFold-AF2 shortens turn-around times of experiments due to its optimized usage of AF2’s models. In this protocol, we guide the reader through ColabFold best-practices using three scenarios: (1) monomer prediction, (2) complex prediction, and (3) conformation sampling. The first two scenarios cover classic static structure prediction and are demonstrated on the human glycosylphosphatidylinositol transamidase (GPIT) protein. The third scenario demonstrates an alternative use-case of the AF2 models by predicting two conformations of the human Alanine Serine Transporter 2 (ASCT2). Users can run the protocol without command-line knowledge via Google Colaboratory or in a command-line environment. The protocol is available at https://protocol.colabfold.com.
科研通智能强力驱动
Strongly Powered by AbleSci AI