High-performance one-stage detector for SiC crystal defects based on convolutional neural network

卷积神经网络 计算机科学 Crystal(编程语言) 碳化硅 探测器 人工智能 背景(考古学) 材料科学 光电子学 电信 生物 古生物学 冶金 程序设计语言
作者
Haochen Shi,Zhiyuan Jin,Wenjing Tang,Jing Wang,Kai Jiang,Mingsheng Xu,Wei Xia,Xin Xu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 110994-110994 被引量:2
标识
DOI:10.1016/j.knosys.2023.110994
摘要

SiC (silicon carbide), as the most important third-generation semiconductor material, has huge market prospects in numerous fields, such as 5G base stations and new energy vehicle charging piles. The identification of SiC crystal defects is essential for improving crystal quality. Currently, this study relies mainly on artificial methods to identify defects, which have significant limitations in terms of accuracy and efficiency. Thus, to quickly detect and classify different SiC crystal defects in complex scenarios, a convolutional neural network-based SiC crystal defect detection (SCDD-Net) model is presented for the first time in this study. SCDD-Net uses an improved online convolutional re-parameterization method that can effectively extract the features of SiC crystal defects and decrease the large training overhead. We devised a new spatial pyramid pooling module that, when combined with the global context block, enables the fast fusion of high-level crystal defects and underlying features. We also designed an anchor-based decoupling detection head network to identify smaller crystal defects. By collecting and processing more than 5300 high-quality microscopic images, we built a fine-grained labeled SiC crystal defect image dataset, SiC-Crystal-5K, for the first time. The experimental results show that the SCDD-Net has excellent detection accuracy compared to other state-of-the-art models. The mean average precision for high-resolution SiC crystal defect identification reached 99.53%, corresponding to a single-image detection speed of 102 fps. In addition to crystal-defect detection, the SCDD-Net model can be used as a general-purpose detector in a wide range of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子暮发布了新的文献求助20
2秒前
顺利山柏发布了新的文献求助10
4秒前
方一发布了新的文献求助10
4秒前
xu发布了新的文献求助10
5秒前
田様应助珍惜采纳,获得10
7秒前
皇帝的床帘应助将将采纳,获得30
8秒前
大模型应助大气岑采纳,获得10
12秒前
jjy发布了新的文献求助10
13秒前
13秒前
16秒前
19秒前
禁止通行完成签到,获得积分10
20秒前
21秒前
liu发布了新的文献求助10
21秒前
优秀的嚓茶完成签到,获得积分10
24秒前
大气岑发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
Ava应助zlzl采纳,获得10
31秒前
merryorange完成签到,获得积分10
31秒前
珍惜发布了新的文献求助10
31秒前
32秒前
风中听枫完成签到 ,获得积分10
34秒前
LL77完成签到,获得积分10
34秒前
罗蒙洛索夫完成签到,获得积分10
35秒前
我不是胖子完成签到 ,获得积分20
36秒前
gx发布了新的文献求助10
38秒前
38秒前
桐桐应助XPR采纳,获得10
41秒前
42秒前
皇帝的床帘应助光力矩人采纳,获得20
43秒前
QUHUI发布了新的文献求助10
43秒前
45秒前
所所应助liu采纳,获得10
45秒前
47秒前
48秒前
重要冷雁发布了新的文献求助10
49秒前
50秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164310
求助须知:如何正确求助?哪些是违规求助? 2815071
关于积分的说明 7907481
捐赠科研通 2474626
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228