Machine Learning in Laboratory Medicine: Recommendations of the IFCC Working Group

医学实验室 工作流程 最佳实践 计算机科学 质量(理念) 人工智能 工作(物理) 机器学习 医学 病理 工程类 哲学 管理 认识论 经济 数据库 机械工程
作者
Stephen R. Master,Tony Badrick,Andreas Bietenbeck,Shannon Haymond
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
卷期号:69 (7): 690-698 被引量:10
标识
DOI:10.1093/clinchem/hvad055
摘要

Abstract Background Machine learning (ML) has been applied to an increasing number of predictive problems in laboratory medicine, and published work to date suggests that it has tremendous potential for clinical applications. However, a number of groups have noted the potential pitfalls associated with this work, particularly if certain details of the development and validation pipelines are not carefully controlled. Methods To address these pitfalls and other specific challenges when applying machine learning in a laboratory medicine setting, a working group of the International Federation for Clinical Chemistry and Laboratory Medicine was convened to provide a guidance document for this domain. Results This manuscript represents consensus recommendations for best practices from that committee, with the goal of improving the quality of developed and published ML models designed for use in clinical laboratories. Conclusions The committee believes that implementation of these best practices will improve the quality and reproducibility of machine learning utilized in laboratory medicine. Summary We have provided our consensus assessment of a number of important practices that are required to ensure that valid, reproducible machine learning (ML) models can be applied to address operational and diagnostic questions in the clinical laboratory. These practices span all phases of model development, from problem formulation through predictive implementation. Although it is not possible to exhaustively discuss every potential pitfall in ML workflows, we believe that our current guidelines capture best practices for avoiding the most common and potentially dangerous errors in this important emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Little2发布了新的文献求助10
刚刚
2秒前
qq发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
万能图书馆应助qq采纳,获得10
7秒前
7秒前
科研通AI5应助大西瓜采纳,获得10
8秒前
8秒前
8秒前
jxas发布了新的文献求助10
9秒前
9秒前
10秒前
yangqing完成签到,获得积分10
10秒前
10秒前
11秒前
yqx发布了新的文献求助10
11秒前
11秒前
11秒前
Ava应助李傲采纳,获得10
11秒前
12秒前
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得20
13秒前
无花果应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得30
14秒前
李爱国应助科研通管家采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775376
求助须知:如何正确求助?哪些是违规求助? 3321021
关于积分的说明 10203165
捐赠科研通 3035891
什么是DOI,文献DOI怎么找? 1665880
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757740