Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology

人工智能 癌症 深度学习 机器学习 人工神经网络 精密医学 计算机科学 医学 病理 内科学
作者
Zhe Wang,Yang Liu,Xing Niu
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:93: 83-96 被引量:34
标识
DOI:10.1016/j.semcancer.2023.04.009
摘要

Gastric cancer is a leading contributor to cancer incidence and mortality globally. Recently, artificial intelligence approaches, particularly machine learning and deep learning, are rapidly reshaping the full spectrum of clinical management for gastric cancer. Machine learning is formed from computers running repeated iterative models for progressively improving performance on a particular task. Deep learning is a subtype of machine learning on the basis of multilayered neural networks inspired by the human brain. This review summarizes the application of artificial intelligence algorithms to multi-dimensional data including clinical and follow-up information, conventional images (endoscope, histopathology, and computed tomography (CT)), molecular biomarkers, etc. to improve the risk surveillance of gastric cancer with established risk factors; the accuracy of diagnosis, and survival prediction among established gastric cancer patients; and the prediction of treatment outcomes for assisting clinical decision making. Therefore, artificial intelligence makes a profound impact on almost all aspects of gastric cancer from improving diagnosis to precision medicine. Despite this, most established artificial intelligence-based models are in a research-based format and often have limited value in real-world clinical practice. With the increasing adoption of artificial intelligence in clinical use, we anticipate the arrival of artificial intelligence-powered gastric cancer care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SSS水鱼发布了新的文献求助10
1秒前
完美世界应助zkwww采纳,获得10
2秒前
华仔应助H先生采纳,获得10
3秒前
3秒前
陈住气完成签到,获得积分10
5秒前
Owen应助qwe采纳,获得10
5秒前
callmefather完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助善良夜梅采纳,获得10
6秒前
6秒前
6秒前
7秒前
SciGPT应助小黄采纳,获得10
7秒前
7秒前
8秒前
靖惠发布了新的文献求助10
9秒前
luying发布了新的文献求助10
9秒前
万能图书馆应助相因采纳,获得10
10秒前
10秒前
Ava应助欣喜亚男采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
吗喽为您接诊完成签到,获得积分10
12秒前
13秒前
111完成签到 ,获得积分10
13秒前
称心剑鬼完成签到,获得积分10
14秒前
keyandog发布了新的文献求助10
14秒前
14秒前
自觉绿柏完成签到,获得积分20
15秒前
十三发布了新的文献求助10
15秒前
15秒前
杨傲多完成签到,获得积分10
16秒前
angege完成签到,获得积分10
16秒前
CipherSage应助Emma采纳,获得10
16秒前
乐观的从云完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260627
求助须知:如何正确求助?哪些是违规求助? 2901771
关于积分的说明 8317194
捐赠科研通 2571394
什么是DOI,文献DOI怎么找? 1397005
科研通“疑难数据库(出版商)”最低求助积分说明 653622
邀请新用户注册赠送积分活动 632105