MulTFBS: A Spatial-Temporal Network with Multichannels for Predicting Transcription Factor Binding Sites

计算机科学 DNA结合位点 嵌入 卷积神经网络 人工智能 深度学习 DNA微阵列 转录因子 编码(内存) 文字嵌入 序列(生物学) k-mer公司 数据挖掘 DNA测序 模式识别(心理学) DNA 基因 发起人 生物 遗传学 基因表达
作者
Jujuan Zhuang,Xinru Huang,Shuhan Liu,Wanquan Gao,Rui Su,Kexin Feng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4322-4333
标识
DOI:10.1021/acs.jcim.3c02088
摘要

Revealing the mechanisms that influence transcription factor binding specificity is the key to understanding gene regulation. In previous studies, DNA double helix structure and one-hot embedding have been used successfully to design computational methods for predicting transcription factor binding sites (TFBSs). However, DNA sequence as a kind of biological language, the method of word embedding representation in natural language processing, has not been considered properly in TFBS prediction models. In our work, we integrate different types of features of DNA sequence to design a multichanneled deep learning framework, namely MulTFBS, in which independent one-hot encoding, word embedding encoding, which can incorporate contextual information and extract the global features of the sequences, and double helix three-dimensional structural features have been trained in different channels. To extract sequence high-level information effectively, in our deep learning framework, we select the spatial-temporal network by combining convolutional neural networks and bidirectional long short-term memory networks with attention mechanism. Compared with six state-of-the-art methods on 66 universal protein-binding microarray data sets of different transcription factors, MulTFBS performs best on all data sets in the regression tasks, with the average R2 of 0.698 and the average PCC of 0.833, which are 5.4% and 3.2% higher, respectively, than the suboptimal method CRPTS. In addition, we evaluate the classification performance of MulTFBS for distinguishing bound or unbound regions on TF ChIP-seq data. The results show that our framework also performs well in the TFBS classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cloud发布了新的文献求助10
2秒前
LC发布了新的文献求助10
2秒前
劣根完成签到,获得积分10
3秒前
虚心的仙人掌完成签到,获得积分10
3秒前
3秒前
wangdana发布了新的文献求助10
5秒前
大力的诗蕾完成签到 ,获得积分10
10秒前
惑感完成签到 ,获得积分10
10秒前
LC完成签到,获得积分10
10秒前
13秒前
l玖应助zy采纳,获得10
13秒前
小格调发布了新的文献求助60
14秒前
14秒前
XFF发布了新的文献求助10
18秒前
18秒前
赵一丁完成签到,获得积分10
18秒前
zxp完成签到,获得积分10
18秒前
19秒前
浑映之完成签到 ,获得积分10
19秒前
gg完成签到,获得积分10
22秒前
赶路人发布了新的文献求助10
24秒前
彼岸花完成签到,获得积分10
25秒前
龚仕杰完成签到 ,获得积分10
25秒前
YoungDoctor完成签到,获得积分10
27秒前
29秒前
fbbggb完成签到,获得积分10
30秒前
乐正念云发布了新的文献求助30
32秒前
后知后觉完成签到,获得积分10
32秒前
请叫我托蒂完成签到,获得积分20
34秒前
鹿飞扬完成签到,获得积分10
35秒前
36秒前
可靠的凌波关注了科研通微信公众号
38秒前
40秒前
du发布了新的文献求助10
40秒前
所所应助XFF采纳,获得10
42秒前
42秒前
lpt完成签到 ,获得积分10
43秒前
泠风来完成签到,获得积分10
43秒前
qyang发布了新的文献求助10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023