Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control

强化学习 计算机科学 适应性 稳健性(进化) 过程(计算) 背景(考古学) 过程控制 控制工程 人工智能 控制(管理) 控制理论(社会学) 工程类 生物 生物化学 基因 操作系统 古生物学 化学 生态学
作者
Runze Lin,Junghui Chen,Lei Xie,Hongye Su
出处
期刊:Neural Networks [Elsevier BV]
卷期号:158: 197-215 被引量:10
标识
DOI:10.1016/j.neunet.2022.10.016
摘要

In the context of intelligent manufacturing in the process industry, traditional model-based optimization control methods cannot adapt to the situation of drastic changes in working conditions or operating modes. Reinforcement learning (RL) directly achieves the control objective by interacting with the environment, and has significant advantages in the presence of uncertainty since it does not require an explicit model of the operating plant. However, most RL algorithms fail to retain transfer learning capabilities in the presence of mode variation, which becomes a practical obstacle to industrial process control applications. To address these issues, we design a framework that uses local data augmentation to improve the training efficiency and transfer learning (adaptability) performance. Therefore, this paper proposes a novel RL control algorithm, CBR-MA-DDPG, organically integrating case-based reasoning (CBR), model-assisted (MA) experience augmentation, and deep deterministic policy gradient (DDPG). When the operating mode changes, CBR-MA-DDPG can quickly adapt to the varying environment and achieve the desired control performance within several training episodes. Experimental analyses on a continuous stirred tank reactor (CSTR) and an organic Rankine cycle (ORC) demonstrate the superiority of the proposed method in terms of both adaptability and control performance/robustness. The results show that the control performance of the CBR-MA-DDPG agent outperforms the conventional PI and MPC control schemes, and that it has higher training efficiency than the state-of-the-art DDPG, TD3, and PPO algorithms in transfer learning scenarios with mode shift situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feikun发布了新的文献求助10
刚刚
jinjinjin完成签到,获得积分10
刚刚
脑洞疼应助轻松思枫采纳,获得10
刚刚
1秒前
sunlulu完成签到,获得积分20
2秒前
2秒前
光123完成签到 ,获得积分10
2秒前
震动的化蛹完成签到,获得积分10
3秒前
wongtinlun完成签到,获得积分20
3秒前
爱吃香菜完成签到,获得积分10
4秒前
gogoyoco发布了新的文献求助10
4秒前
一一完成签到,获得积分20
4秒前
4秒前
2032jia完成签到,获得积分10
4秒前
木易发布了新的文献求助10
5秒前
123684完成签到,获得积分10
5秒前
大个应助Xsxbb_zxCG采纳,获得10
5秒前
hoshi完成签到,获得积分10
5秒前
6秒前
豆西豆完成签到,获得积分10
6秒前
狗狗完成签到 ,获得积分10
6秒前
Owen应助清梦采纳,获得10
6秒前
laipuling完成签到,获得积分10
7秒前
maru完成签到 ,获得积分10
7秒前
wwgn完成签到,获得积分10
7秒前
风清扬发布了新的文献求助10
7秒前
沙耶酱完成签到,获得积分10
8秒前
tracer完成签到,获得积分10
8秒前
WNL发布了新的文献求助10
8秒前
ScholarZmm完成签到,获得积分10
8秒前
hanzhang完成签到,获得积分10
8秒前
Silole完成签到,获得积分10
8秒前
醋酸异丙酯关注了科研通微信公众号
9秒前
蓝冰完成签到,获得积分10
9秒前
Ali完成签到,获得积分10
10秒前
10秒前
11秒前
yenom完成签到,获得积分10
12秒前
QQQ完成签到,获得积分10
12秒前
haha完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128