Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control

强化学习 计算机科学 适应性 稳健性(进化) 过程(计算) 背景(考古学) 过程控制 控制工程 人工智能 控制(管理) 控制理论(社会学) 工程类 生物 生物化学 基因 操作系统 古生物学 化学 生态学
作者
Runze Lin,Junghui Chen,Lei Xie,Hongye Su
出处
期刊:Neural Networks [Elsevier]
卷期号:158: 197-215 被引量:10
标识
DOI:10.1016/j.neunet.2022.10.016
摘要

In the context of intelligent manufacturing in the process industry, traditional model-based optimization control methods cannot adapt to the situation of drastic changes in working conditions or operating modes. Reinforcement learning (RL) directly achieves the control objective by interacting with the environment, and has significant advantages in the presence of uncertainty since it does not require an explicit model of the operating plant. However, most RL algorithms fail to retain transfer learning capabilities in the presence of mode variation, which becomes a practical obstacle to industrial process control applications. To address these issues, we design a framework that uses local data augmentation to improve the training efficiency and transfer learning (adaptability) performance. Therefore, this paper proposes a novel RL control algorithm, CBR-MA-DDPG, organically integrating case-based reasoning (CBR), model-assisted (MA) experience augmentation, and deep deterministic policy gradient (DDPG). When the operating mode changes, CBR-MA-DDPG can quickly adapt to the varying environment and achieve the desired control performance within several training episodes. Experimental analyses on a continuous stirred tank reactor (CSTR) and an organic Rankine cycle (ORC) demonstrate the superiority of the proposed method in terms of both adaptability and control performance/robustness. The results show that the control performance of the CBR-MA-DDPG agent outperforms the conventional PI and MPC control schemes, and that it has higher training efficiency than the state-of-the-art DDPG, TD3, and PPO algorithms in transfer learning scenarios with mode shift situations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔同学完成签到,获得积分10
2秒前
bkagyin应助窗外风雨阑珊采纳,获得10
2秒前
99发布了新的文献求助10
4秒前
aikeyan完成签到 ,获得积分10
4秒前
灰灰发布了新的文献求助10
5秒前
文6完成签到 ,获得积分10
7秒前
苏信怜完成签到,获得积分10
8秒前
细心的安双完成签到 ,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
Fiona完成签到 ,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
沉静胜完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
arniu2008应助科研通管家采纳,获得10
10秒前
小药童应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
11秒前
Yangyang完成签到,获得积分10
11秒前
小玉完成签到,获得积分10
11秒前
倪好完成签到,获得积分10
11秒前
LL完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
兔兔完成签到 ,获得积分10
13秒前
化学课die表完成签到 ,获得积分10
13秒前
菠萝蜜完成签到,获得积分10
13秒前
14秒前
woommoow完成签到,获得积分10
14秒前
灰灰完成签到,获得积分10
14秒前
麦穗完成签到,获得积分10
15秒前
16秒前
陈锦鲤完成签到 ,获得积分10
18秒前
LuckyMM完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071