亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control

强化学习 计算机科学 适应性 稳健性(进化) 过程(计算) 背景(考古学) 过程控制 控制工程 人工智能 控制(管理) 控制理论(社会学) 工程类 生物 生物化学 基因 操作系统 古生物学 化学 生态学
作者
Runze Lin,Junghui Chen,Lei Xie,Hongye Su
出处
期刊:Neural Networks [Elsevier]
卷期号:158: 197-215 被引量:10
标识
DOI:10.1016/j.neunet.2022.10.016
摘要

In the context of intelligent manufacturing in the process industry, traditional model-based optimization control methods cannot adapt to the situation of drastic changes in working conditions or operating modes. Reinforcement learning (RL) directly achieves the control objective by interacting with the environment, and has significant advantages in the presence of uncertainty since it does not require an explicit model of the operating plant. However, most RL algorithms fail to retain transfer learning capabilities in the presence of mode variation, which becomes a practical obstacle to industrial process control applications. To address these issues, we design a framework that uses local data augmentation to improve the training efficiency and transfer learning (adaptability) performance. Therefore, this paper proposes a novel RL control algorithm, CBR-MA-DDPG, organically integrating case-based reasoning (CBR), model-assisted (MA) experience augmentation, and deep deterministic policy gradient (DDPG). When the operating mode changes, CBR-MA-DDPG can quickly adapt to the varying environment and achieve the desired control performance within several training episodes. Experimental analyses on a continuous stirred tank reactor (CSTR) and an organic Rankine cycle (ORC) demonstrate the superiority of the proposed method in terms of both adaptability and control performance/robustness. The results show that the control performance of the CBR-MA-DDPG agent outperforms the conventional PI and MPC control schemes, and that it has higher training efficiency than the state-of-the-art DDPG, TD3, and PPO algorithms in transfer learning scenarios with mode shift situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Criminology34应助科研通管家采纳,获得10
2秒前
HaCat应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
HaCat应助科研通管家采纳,获得10
3秒前
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
领导范儿应助光亮的半山采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
是漏漏呀发布了新的文献求助10
8秒前
8秒前
Sherry完成签到 ,获得积分10
9秒前
hhdr完成签到 ,获得积分10
13秒前
tttttttt完成签到 ,获得积分10
22秒前
25秒前
sunny完成签到 ,获得积分10
26秒前
能干的人完成签到,获得积分10
26秒前
linfordlu发布了新的文献求助10
31秒前
从一岁就很帅完成签到,获得积分10
31秒前
34秒前
34秒前
锦云完成签到,获得积分10
35秒前
光亮的半山完成签到,获得积分10
44秒前
重庆森林完成签到,获得积分10
50秒前
1分钟前
谭慧娉完成签到 ,获得积分10
1分钟前
HD完成签到,获得积分10
1分钟前
allover完成签到,获得积分10
1分钟前
Li完成签到 ,获得积分10
1分钟前
1分钟前
也是难得取个名完成签到 ,获得积分10
1分钟前
老实验人完成签到,获得积分10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得20
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302224
求助须知:如何正确求助?哪些是违规求助? 4449431
关于积分的说明 13848340
捐赠科研通 4335611
什么是DOI,文献DOI怎么找? 2380451
邀请新用户注册赠送积分活动 1375435
关于科研通互助平台的介绍 1341616