Machine learning prediction of malignant middle cerebral artery infarction after mechanical thrombectomy for anterior circulation large vessel occlusion

医学 接收机工作特性 逻辑回归 随机森林 内科学 机器学习 计算机科学
作者
Haydn Hoffman,Jacob S Wood,John R. Cote,Muhammad S. Jalal,Hesham Masoud,Grahame Gould
出处
期刊:Journal of stroke and cerebrovascular diseases [Elsevier]
卷期号:32 (3): 106989-106989 被引量:5
标识
DOI:10.1016/j.jstrokecerebrovasdis.2023.106989
摘要

Prediction of malignant middle cerebral artery infarction (MMI) could identify patients for early intervention. We trained and internally validated a ML model that predicts MMI following mechanical thrombectomy (MT) for ACLVO.All patients who underwent MT for ACLVO between 2015 - 2021 at a single institution were reviewed. Data was divided into 80% training and 20% test sets. 10 models were evaluated on the training set. The top 3 models underwent hyperparameter tuning using grid search with nested 5-fold CV to optimize the area under the receiver operating curve (AUROC). Tuned models were evaluated on the test set and compared to logistic regression.A total of 381 patients met the inclusion criteria. There were 50 (13.1%) patients who developed MMI. Out of the 10 ML models screened on the training set, the top 3 performing were neural network (median AUROC 0.78, IQR 0.72 - 0.83), support vector machine ([SVM] median AUROC 0.77, IQR 0.72 - 0.83), and random forest (median AUROC 0.75, IQR 0.68 - 0.81). On the test set, random forest (median AUROC 0.78, IQR 0.73 - 0.83) and neural network (median AUROC 0.78, IQR 0.73 - 0.83) were the top performing models, followed by SVM (median AUROC 0.77, IQR 0.70 - 0.83). These scores were significantly better than those for logistic regression (AUROC 0.72, IQR 0.66 - 0.78), individual risk factors, and the Malignant Brain Edema score (p < 0.001 for all).ML models predicted MMI with good discriminative ability. They outperformed standard statistical techniques and individual risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马发布了新的文献求助10
刚刚
徐奔奔发布了新的文献求助10
刚刚
磨人的老妖精完成签到,获得积分10
刚刚
痞老板发布了新的文献求助10
1秒前
潺潺流水完成签到,获得积分10
1秒前
ruann完成签到 ,获得积分10
1秒前
1秒前
1秒前
大个应助优美冰之采纳,获得10
2秒前
TT完成签到,获得积分10
2秒前
2秒前
今天发SCI了吗完成签到 ,获得积分10
2秒前
一个橘子的命运完成签到,获得积分10
2秒前
小蘑菇应助axl采纳,获得10
3秒前
LTT417应助axl采纳,获得20
3秒前
sily完成签到,获得积分20
3秒前
貔貅发布了新的文献求助10
3秒前
HealthyCH完成签到,获得积分10
4秒前
4秒前
潺潺流水发布了新的文献求助10
4秒前
坤坤完成签到,获得积分10
5秒前
汉堡包应助追寻雨采纳,获得10
6秒前
研友_VZG7GZ应助王安石采纳,获得10
6秒前
子小孙完成签到,获得积分10
7秒前
mmyhn应助HealthyCH采纳,获得10
7秒前
小美爱科研完成签到,获得积分10
7秒前
叶子完成签到 ,获得积分10
7秒前
7秒前
8秒前
温暖的碧蓉完成签到 ,获得积分10
8秒前
9秒前
9秒前
曲初雪发布了新的文献求助200
10秒前
给我一个小橘子完成签到,获得积分10
10秒前
Henry完成签到,获得积分10
10秒前
好运莲莲完成签到,获得积分20
10秒前
wadaxiwa应助一只绒可可采纳,获得10
11秒前
lushier完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556318
求助须知:如何正确求助?哪些是违规求助? 3131869
关于积分的说明 9393671
捐赠科研通 2831942
什么是DOI,文献DOI怎么找? 1556591
邀请新用户注册赠送积分活动 726696
科研通“疑难数据库(出版商)”最低求助积分说明 716018