Origins and Influences of Voids in Composite Cathodes for All-Solid-State Batteries

阳极 材料科学 阴极 空隙(复合材料) 复合数 电解质 微观结构 扫描电子显微镜 复合材料 化学工程 纳米技术 电极 化学 物理化学 工程类
作者
Anja Bielefeld,Philip Minnmann,Johannes Schubert,Jürgen Janek
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (6): 1070-1070
标识
DOI:10.1149/ma2023-0161070mtgabs
摘要

With the exit from fossil-fuel energy becoming more and more urgent, advanced batteries are highly sought after and all-solid-state batteries (ASSBs) are seen as a promising technology potentially enabling lithium metal or reservoir-free anode designs which promote the energy density. Despite high research interest in the field, ASSBs still perform below expectations, the main challenges being elevated interfacial resistances, microstructure effects and processing, particularly at large scale. While the build-up of high resistances due to void formation upon lithium stripping at the anode side is increasingly understood, the void formation and its evolution in the composite cathode as well as the effects on the cell performance are widely unknown. Why consider voids in the cathode at all? In contrast to conventional, liquid electrolytes, solid ion conductors (such as thiophosphates) do not easily infiltrate voids and cracks in the cathode 1 . They possess a proper particle morphology and, depending on the solid electrolyte particle size distribution, its suitability to the active material particle sizes and morphologies the electrode structure that forms upon manufacturing can be quite different and influences the ion and electron transport as well as the charge transfer capabilities 2-5 . Experimentally determined void fractions in the composite typically range from 3 to 40 vol% 6,7 and are therefore far away from being negligible. Apart from the void formation at manufacturing, scanning electron microscope (SEM) cross sections of cycled composites have also shown that the volume changes of LiNi x Co y Mn (1-x-y) O 2 active material can lead to contact loss at the interface of the solid electrolyte and the active material 8 which reinforces the importance of understanding the origins and the influences of voids on the cell performance. In this talk, we will discuss these, mainly from the modeling perspective including percolation network models 4 , flux-based simulations of the effective conductivity 5 and electrochemical charge simulations based on the finite-element method 9 . Additionally, we use focused ion beam(FIB)-SEM tomography for the reconstruction of cathodes with different microstructures obtained by changing the particle size of the solid electrolyte. We investigate the influence of the solid electrolyte particle size distribution on the void space fraction and distribution and provide guidelines for further cathode optimization. Ruess, R.; Schweidler, S.; Hemmelmann, H.; Conforto, G.; Bielefeld, A.; Weber, D. A.; Sann, J.; Elm, M. T.; Janek, J., J. Electrochem. , 2020, 167, 100532. Minnmann, P.; Quillman, L.; Burkhardt, S.; Richter, F. H.; Janek, J., Electrochem. Soc., 2021 , 168 , 040537. Jiang, W.; Zhu, X.; Huang, R.; Zhao, S.; Fan, X.; Ling, M.; Liang, C.; Wang, L., Energy Mater, 2022 , 12 , 2103473. Bielefeld, A.; Weber, D. A.; Janek, J., Phys. Chem. C, 2019 , 123 , 1626-1634. Bielefeld, A.; Weber, D. A.; Janek, J., ACS Appl. Interfaces, 2020 , 12 , 12821-12833. Shi, T.; Zhang, Y.-Q.; Tu, Q.; Wang, Y.; Scott, M. C.; Ceder, G., Mater. Chem. A, 2020 , 8 , 17399-17404. Ates, T.; Keller, M.; Kulisch, J.; Adermann, T.; Passerini, S. Energy Storage Mater., 2019 , 17 , 204-210. Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J., Mater., 2017 , 29 , 5574-5582. Bielefeld, A.; Weber, D. A.; Ruess, R.; Glavas, V.; Janek, J., Electrochem. Soc., 2022 , 169 , 020539. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文艺的懿应助我行我素采纳,获得10
刚刚
chenny完成签到,获得积分10
刚刚
1秒前
lx840518发布了新的文献求助10
1秒前
闫富扬发布了新的文献求助10
1秒前
能用就行完成签到 ,获得积分10
1秒前
慕青应助sss采纳,获得10
1秒前
2秒前
阳光土豆完成签到,获得积分20
2秒前
orixero应助机智的然然采纳,获得30
3秒前
璇22发布了新的文献求助10
3秒前
来杯生椰拿铁完成签到,获得积分10
4秒前
闫先生完成签到,获得积分10
4秒前
4秒前
鱼子西完成签到,获得积分10
4秒前
baisefengche完成签到,获得积分20
4秒前
5秒前
寒冷书竹发布了新的文献求助10
6秒前
令人秃头发布了新的文献求助10
7秒前
iyy完成签到,获得积分20
7秒前
LuciusHe发布了新的文献求助10
7秒前
领导范儿应助NNUsusan采纳,获得10
7秒前
搞怪城完成签到,获得积分10
7秒前
水吉水吉完成签到,获得积分10
7秒前
哆啦完成签到,获得积分10
8秒前
ily.发布了新的文献求助10
8秒前
FashionBoy应助科研扫地僧采纳,获得10
8秒前
admin完成签到,获得积分10
8秒前
zzzy完成签到 ,获得积分10
9秒前
9秒前
顺利紫山发布了新的文献求助10
9秒前
pluto应助宁阿霜采纳,获得10
10秒前
无辜紫菜完成签到,获得积分10
12秒前
zhugongwangdawei完成签到,获得积分10
12秒前
admin发布了新的文献求助10
12秒前
12秒前
leodu发布了新的文献求助10
13秒前
芹菜完成签到,获得积分10
13秒前
SHAO应助璇22采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620