Origins and Influences of Voids in Composite Cathodes for All-Solid-State Batteries

阳极 材料科学 阴极 空隙(复合材料) 复合数 电解质 微观结构 扫描电子显微镜 复合材料 化学工程 纳米技术 电极 化学 工程类 物理化学
作者
Anja Bielefeld,Philip Minnmann,Johannes Schubert,Jürgen Janek
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (6): 1070-1070
标识
DOI:10.1149/ma2023-0161070mtgabs
摘要

With the exit from fossil-fuel energy becoming more and more urgent, advanced batteries are highly sought after and all-solid-state batteries (ASSBs) are seen as a promising technology potentially enabling lithium metal or reservoir-free anode designs which promote the energy density. Despite high research interest in the field, ASSBs still perform below expectations, the main challenges being elevated interfacial resistances, microstructure effects and processing, particularly at large scale. While the build-up of high resistances due to void formation upon lithium stripping at the anode side is increasingly understood, the void formation and its evolution in the composite cathode as well as the effects on the cell performance are widely unknown. Why consider voids in the cathode at all? In contrast to conventional, liquid electrolytes, solid ion conductors (such as thiophosphates) do not easily infiltrate voids and cracks in the cathode 1 . They possess a proper particle morphology and, depending on the solid electrolyte particle size distribution, its suitability to the active material particle sizes and morphologies the electrode structure that forms upon manufacturing can be quite different and influences the ion and electron transport as well as the charge transfer capabilities 2-5 . Experimentally determined void fractions in the composite typically range from 3 to 40 vol% 6,7 and are therefore far away from being negligible. Apart from the void formation at manufacturing, scanning electron microscope (SEM) cross sections of cycled composites have also shown that the volume changes of LiNi x Co y Mn (1-x-y) O 2 active material can lead to contact loss at the interface of the solid electrolyte and the active material 8 which reinforces the importance of understanding the origins and the influences of voids on the cell performance. In this talk, we will discuss these, mainly from the modeling perspective including percolation network models 4 , flux-based simulations of the effective conductivity 5 and electrochemical charge simulations based on the finite-element method 9 . Additionally, we use focused ion beam(FIB)-SEM tomography for the reconstruction of cathodes with different microstructures obtained by changing the particle size of the solid electrolyte. We investigate the influence of the solid electrolyte particle size distribution on the void space fraction and distribution and provide guidelines for further cathode optimization. Ruess, R.; Schweidler, S.; Hemmelmann, H.; Conforto, G.; Bielefeld, A.; Weber, D. A.; Sann, J.; Elm, M. T.; Janek, J., J. Electrochem. , 2020, 167, 100532. Minnmann, P.; Quillman, L.; Burkhardt, S.; Richter, F. H.; Janek, J., Electrochem. Soc., 2021 , 168 , 040537. Jiang, W.; Zhu, X.; Huang, R.; Zhao, S.; Fan, X.; Ling, M.; Liang, C.; Wang, L., Energy Mater, 2022 , 12 , 2103473. Bielefeld, A.; Weber, D. A.; Janek, J., Phys. Chem. C, 2019 , 123 , 1626-1634. Bielefeld, A.; Weber, D. A.; Janek, J., ACS Appl. Interfaces, 2020 , 12 , 12821-12833. Shi, T.; Zhang, Y.-Q.; Tu, Q.; Wang, Y.; Scott, M. C.; Ceder, G., Mater. Chem. A, 2020 , 8 , 17399-17404. Ates, T.; Keller, M.; Kulisch, J.; Adermann, T.; Passerini, S. Energy Storage Mater., 2019 , 17 , 204-210. Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J., Mater., 2017 , 29 , 5574-5582. Bielefeld, A.; Weber, D. A.; Ruess, R.; Glavas, V.; Janek, J., Electrochem. Soc., 2022 , 169 , 020539. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zfy采纳,获得10
刚刚
sak完成签到,获得积分10
1秒前
Shuo Yang发布了新的文献求助20
1秒前
呜呜呜呜发布了新的文献求助10
1秒前
在水一方应助hhzz采纳,获得10
1秒前
旧是完成签到 ,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
杨小胖完成签到 ,获得积分10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
mm发布了新的文献求助10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
shouyu29应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
RC_Wang应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
sutharsons应助科研通管家采纳,获得30
4秒前
归海含烟完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
shire应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
匹诺曹发布了新的文献求助10
5秒前
唐画完成签到 ,获得积分10
5秒前
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808