亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Objective online streaming Multi-Label feature selection using mutual information

计算机科学 特征选择 数据挖掘 帕累托原理 相互信息 机器学习 特征(语言学) 人工智能 冗余(工程) 集合(抽象数据类型) 数据流挖掘 选择(遗传算法) 过程(计算) 特征向量 数学优化 操作系统 哲学 语言学 程序设计语言 数学
作者
Azar Rafie,Parham Moradi,Abdulbaghi Ghaderzadeh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:216: 119428-119428 被引量:13
标识
DOI:10.1016/j.eswa.2022.119428
摘要

Multi-label classification methods aim at assigning more than one label to each instance. In many real-world classification problems such as image multi-label classification tasks such as cancer detection, and text classification, we faced with thousands of thousand features. The performance of machine learning methods will be reduced while faced with high dimensional problems. To tackle this issue, feature selection methods are introduced to choose a small set of prominent features which best describe the data. Traditional multi-label feature selection methods are required to access to whole feature space, while in online platforms such as Facebook and Twitter, we faced with streams of data added by the users of these platforms over the time. Traditional multi-label feature selection methods are failed while applied on data streams. To solve this issue, online methods are introduced to deal with data streams. Existing streaming multi-label feature selection methods consider the task as a single optimization process while there are several contradictory objectives that need to be optimize simultaneously. To solve this issue, this paper uses a multi-objective search strategy to choose streaming features by using the mutual information and Pareto optimal set theories. There are several objectives such as minimizing the redundancy of features, and maximizing the relevancy of features to a set of labels that are need to be optimized during the feature selection process. Here, we used the Pareto set theory to identify a set of no-dominant solutions which best describe the problem. The proposed method has compared with a set of state-of-the-art online feature selection methods and the obtained results demonstrate the effectiveness of the proposed strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽松思完成签到 ,获得积分10
11秒前
13秒前
为神指路发布了新的文献求助10
14秒前
20秒前
葛力发布了新的文献求助10
21秒前
26秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
555557应助科研通管家采纳,获得10
31秒前
43秒前
1分钟前
顺心蜜粉发布了新的文献求助200
1分钟前
葛力完成签到,获得积分20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
916应助葛力采纳,获得10
1分钟前
1分钟前
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
1分钟前
夜洛乌泽发布了新的文献求助10
1分钟前
1分钟前
顺心蜜粉发布了新的文献求助10
1分钟前
2分钟前
2分钟前
背后梦安发布了新的文献求助30
2分钟前
2分钟前
善学以致用应助lf采纳,获得10
2分钟前
3分钟前
3分钟前
lf发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
linkman完成签到,获得积分10
3分钟前
linkman发布了新的文献求助10
3分钟前
4分钟前
旅途规律完成签到,获得积分10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520749
关于积分的说明 11204693
捐赠科研通 3257497
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629