A Multi-Objective online streaming Multi-Label feature selection using mutual information

计算机科学 特征选择 数据挖掘 帕累托原理 相互信息 机器学习 特征(语言学) 人工智能 冗余(工程) 集合(抽象数据类型) 数据流挖掘 选择(遗传算法) 过程(计算) 特征向量 数学优化 操作系统 哲学 语言学 程序设计语言 数学
作者
Azar Rafie,Parham Moradi,Abdulbaghi Ghaderzadeh
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:216: 119428-119428 被引量:13
标识
DOI:10.1016/j.eswa.2022.119428
摘要

Multi-label classification methods aim at assigning more than one label to each instance. In many real-world classification problems such as image multi-label classification tasks such as cancer detection, and text classification, we faced with thousands of thousand features. The performance of machine learning methods will be reduced while faced with high dimensional problems. To tackle this issue, feature selection methods are introduced to choose a small set of prominent features which best describe the data. Traditional multi-label feature selection methods are required to access to whole feature space, while in online platforms such as Facebook and Twitter, we faced with streams of data added by the users of these platforms over the time. Traditional multi-label feature selection methods are failed while applied on data streams. To solve this issue, online methods are introduced to deal with data streams. Existing streaming multi-label feature selection methods consider the task as a single optimization process while there are several contradictory objectives that need to be optimize simultaneously. To solve this issue, this paper uses a multi-objective search strategy to choose streaming features by using the mutual information and Pareto optimal set theories. There are several objectives such as minimizing the redundancy of features, and maximizing the relevancy of features to a set of labels that are need to be optimized during the feature selection process. Here, we used the Pareto set theory to identify a set of no-dominant solutions which best describe the problem. The proposed method has compared with a set of state-of-the-art online feature selection methods and the obtained results demonstrate the effectiveness of the proposed strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默完成签到 ,获得积分10
1秒前
爆米花应助ShujunOvO采纳,获得10
2秒前
2秒前
缓慢修杰完成签到,获得积分10
2秒前
专一的鸡翅完成签到 ,获得积分10
2秒前
坦率的惊蛰完成签到,获得积分10
2秒前
3秒前
芥末奶半糖加冰完成签到,获得积分10
3秒前
四大天王看电势完成签到,获得积分10
3秒前
大媛大靳吃地瓜完成签到,获得积分10
3秒前
哆啦A梦完成签到,获得积分10
4秒前
Ch185完成签到,获得积分10
4秒前
科研小笨猪完成签到,获得积分10
5秒前
Jocd完成签到,获得积分10
5秒前
Eusha完成签到,获得积分10
5秒前
qiaokizhang完成签到,获得积分10
6秒前
科研行僧完成签到,获得积分10
6秒前
6秒前
lumi完成签到,获得积分10
8秒前
1235656646完成签到,获得积分10
8秒前
复杂的熊猫完成签到,获得积分10
8秒前
懒洋洋发布了新的文献求助10
9秒前
9秒前
9秒前
myy完成签到,获得积分10
10秒前
10秒前
REN关闭了REN文献求助
10秒前
hanna完成签到 ,获得积分10
11秒前
zzaswwd完成签到,获得积分10
11秒前
沙发背景墙完成签到,获得积分10
11秒前
Rondab应助勤恳的半邪采纳,获得10
12秒前
执着凡梦发布了新的文献求助10
12秒前
13秒前
黑色的白鲸完成签到,获得积分10
13秒前
march完成签到,获得积分10
13秒前
吕健完成签到,获得积分10
14秒前
Linda琳完成签到,获得积分10
14秒前
勤劳的老九应助星空采纳,获得10
14秒前
llullalla完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968608
求助须知:如何正确求助?哪些是违规求助? 3513486
关于积分的说明 11168243
捐赠科研通 3248926
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804676