已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive autonomous navigation system for coal mine inspection robots: overcoming intersection challenges

交叉口(航空) 煤矿开采 机器人 计算机科学 人工智能 计算机视觉 采矿工程 建筑工程 工程类 运输工程 废物管理
作者
Hongwei Wang,Chao Li,Liang Wei,Di Wang,L Yao
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
标识
DOI:10.1108/ir-11-2023-0295
摘要

Purpose In response to the navigation challenges faced by coal mine tunnel inspection robots in semistructured underground intersection environments, many current studies rely on structured map-based planning algorithms and trajectory tracking techniques. However, this approach is highly dependent on the accuracy of the global map, which can lead to deviations from the predetermined route or collisions with obstacles. To improve the environmental adaptability and navigation precision of the robot, this paper aims to propose an adaptive navigation system based on a two-dimensional (2D) LiDAR. Design/methodology/approach Leveraging the geometric features of coal mine tunnel environments, the clustering and fitting algorithms are used to construct a geometric model within the navigation system. This not only reduces the complexity of the navigation system but also optimizes local positioning. By constructing a local potential field, there is no need for path-fitting planning, thus enhancing the robot’s adaptability in intersection environments. The feasibility of the algorithm principles is validated through MATLAB and robot operating system simulations in this paper. Findings The experiments demonstrate that this method enables autonomous driving and optimized positioning capabilities in harsh environments, with high real-time performance and environmental adaptability, achieving a positioning error rate of less than 3%. Originality/value This paper presents an adaptive navigation system for a coal mine tunnel inspection robot using a 2D LiDAR sensor. The system improves robot attitude estimation and motion control accuracy to ensure safe and reliable navigation, especially at tunnel intersections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有只小狗发布了新的文献求助10
1秒前
1秒前
zoey发布了新的文献求助20
5秒前
kenken_lou完成签到,获得积分10
6秒前
大个应助飞羽采纳,获得10
6秒前
6秒前
Ava应助Jasmine采纳,获得10
7秒前
9秒前
jinmuna完成签到,获得积分10
9秒前
无花果应助kkjl采纳,获得10
12秒前
赘婿应助陈腿毛采纳,获得10
14秒前
14秒前
Jasper应助DDD采纳,获得10
16秒前
爱静静应助快乐半山采纳,获得10
16秒前
双黄应助夏炖鱿鱼采纳,获得20
20秒前
nenoaowu发布了新的文献求助30
22秒前
23秒前
领导范儿应助KYT采纳,获得10
24秒前
小二郎应助单薄的如之采纳,获得10
24秒前
24秒前
26秒前
程院发布了新的文献求助10
27秒前
28秒前
29秒前
从容芮应助勿欲论比采纳,获得10
30秒前
30秒前
赘婿应助Dice°采纳,获得10
30秒前
轻松的采柳完成签到 ,获得积分10
30秒前
我爱螺蛳粉完成签到 ,获得积分10
32秒前
哈密发布了新的文献求助10
33秒前
Billy应助科研通管家采纳,获得30
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
双黄应助科研通管家采纳,获得10
35秒前
烟花应助科研通管家采纳,获得10
35秒前
35秒前
研友_VZG7GZ应助科研通管家采纳,获得10
35秒前
35秒前
1234567890发布了新的文献求助10
36秒前
怕黑的山彤完成签到 ,获得积分10
42秒前
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314174
求助须知:如何正确求助?哪些是违规求助? 2946559
关于积分的说明 8530555
捐赠科研通 2622218
什么是DOI,文献DOI怎么找? 1434412
科研通“疑难数据库(出版商)”最低求助积分说明 665277
邀请新用户注册赠送积分活动 650838