清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for predicting protein properties: A comprehensive review

计算机科学 机器学习 人工智能
作者
Yizhen Wang,Yanyun Zhang,Xuhui Zhan,Yuhao He,Yongfu Yang,Li Cheng,Daniyal Alghazzawi
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:597: 128103-128103 被引量:1
标识
DOI:10.1016/j.neucom.2024.128103
摘要

In the field of protein engineering, the function and structure of proteins are key to understanding cellular mechanisms, biological evolution, and biodiversity. With the advancement of high-throughput sequencing technologies, we have accumulated a vast amount of protein sequence data, yet the protein properties and functional information contained within these data have not been fully deciphered. Predicting protein properties is crucial for revealing how proteins function within complex biological systems and also offers possibilities for the early diagnosis of diseases and the development of new drugs. However, due to the complexity of protein properties and functions, traditional experimental methods face significant challenges in terms of cost, time, and accuracy. In recent years, machine learning techniques have become a powerful tool for addressing these challenges due to their ability to learn patterns and relationships from large-scale data. Machine learning methods have demonstrated outstanding performance in areas such as protein structure prediction, function annotation, interaction recognition, and physicochemical property prediction. This survey reviews the application of machine learning in protein property prediction. Current research progress, challenges in the field, and future development directions have been discussed, highlighting the significance and potential of machine learning methods in advancing protein science research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助康康XY采纳,获得30
12秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
17秒前
蓝天阳光完成签到,获得积分10
24秒前
26秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助chenqi采纳,获得10
1分钟前
1分钟前
白天亮完成签到,获得积分10
1分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
Glitter完成签到 ,获得积分10
2分钟前
00完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
康康XY发布了新的文献求助30
3分钟前
3分钟前
3分钟前
研友_8y2G0L完成签到,获得积分10
4分钟前
mathmotive完成签到,获得积分20
4分钟前
双手外科结完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
梵莫发布了新的文献求助10
4分钟前
4分钟前
nojego完成签到,获得积分10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
6分钟前
梵莫发布了新的文献求助10
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
CodeCraft应助康康XY采纳,获得10
6分钟前
无一完成签到 ,获得积分0
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972811
求助须知:如何正确求助?哪些是违规求助? 3517116
关于积分的说明 11186225
捐赠科研通 3252713
什么是DOI,文献DOI怎么找? 1796589
邀请新用户注册赠送积分活动 876487
科研通“疑难数据库(出版商)”最低求助积分说明 805701