Machine learning for predicting protein properties: A comprehensive review

计算机科学 机器学习 人工智能
作者
Yizhen Wang,Yanyun Zhang,Xuhui Zhan,Yuhao He,Yongfu Yang,Li Cheng,Daniyal Alghazzawi
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:597: 128103-128103 被引量:1
标识
DOI:10.1016/j.neucom.2024.128103
摘要

In the field of protein engineering, the function and structure of proteins are key to understanding cellular mechanisms, biological evolution, and biodiversity. With the advancement of high-throughput sequencing technologies, we have accumulated a vast amount of protein sequence data, yet the protein properties and functional information contained within these data have not been fully deciphered. Predicting protein properties is crucial for revealing how proteins function within complex biological systems and also offers possibilities for the early diagnosis of diseases and the development of new drugs. However, due to the complexity of protein properties and functions, traditional experimental methods face significant challenges in terms of cost, time, and accuracy. In recent years, machine learning techniques have become a powerful tool for addressing these challenges due to their ability to learn patterns and relationships from large-scale data. Machine learning methods have demonstrated outstanding performance in areas such as protein structure prediction, function annotation, interaction recognition, and physicochemical property prediction. This survey reviews the application of machine learning in protein property prediction. Current research progress, challenges in the field, and future development directions have been discussed, highlighting the significance and potential of machine learning methods in advancing protein science research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
北城发布了新的文献求助10
刚刚
谷雨完成签到 ,获得积分10
1秒前
1秒前
大个应助科研通管家采纳,获得30
1秒前
乐乐应助欣慰的血茗采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
yx_cheng应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得20
2秒前
武雨寒发布了新的文献求助10
3秒前
3秒前
4秒前
liang完成签到,获得积分10
4秒前
11111发布了新的文献求助10
5秒前
华仔应助暴走农民采纳,获得10
7秒前
大力水香发布了新的文献求助10
7秒前
7秒前
dagongren完成签到,获得积分10
8秒前
yiw完成签到,获得积分10
9秒前
小梦发布了新的文献求助10
10秒前
10秒前
强哥完成签到,获得积分10
12秒前
13秒前
13秒前
lily发布了新的文献求助10
14秒前
多情dingding完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
大力水香完成签到,获得积分10
16秒前
SnaiLinsist发布了新的文献求助10
17秒前
大雯仔发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975900
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201602
捐赠科研通 3256663
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877564
科研通“疑难数据库(出版商)”最低求助积分说明 806430