井口
钻井液
水合物
石油工程
笼状水合物
地温梯度
钻探
井筒
地质学
学位(音乐)
压力梯度
热力学
机械
材料科学
化学
海洋学
地球物理学
物理
有机化学
冶金
声学
作者
Wantong Sun,Na Wei,Jinzhou Zhao,Shouwei Zhou,Liehui Zhang,Qingping Li,Lin Jiang,Yao Zhang,Haitao Li,Hanming Xu,Cong Li,Xuncheng Shen,Chenyang Xiong
标识
DOI:10.3389/fenrg.2021.696392
摘要
In the process of deep-water drilling, gas hydrate is easily formed in wellbores due to the low temperature and high pressure environment. In this study, a new, systematic, and accurate prediction method of temperature, pressure, and hydrate formation region in wellbores is developed. The mathematical models of wellbore pressure and transient heat transfer are established, the numerical solution method based on fully implicit finite difference method is developed, and the accuracy is verified by comparing with the field measured data. Combined with the hydrate phase equilibrium model, the hydrate formation region in wellbore is predicted, and the sensitivity effects of nine factors on wellbore temperature, pressure, and hydrate formation region are analyzed. Finally, the influence regularities and degree of each parameter are obtained. The increases of circulation time, geothermal gradient, displacement of drilling fluid, and injection temperature will inhibit the formation of hydrate in wellbores, and the influence degree increases in turn; the increases of wellhead backpressure and seawater depth will promote the formation of hydrate in wellbores, and the influence degree increases in turn. The changes of drilling fluid density, well depth, and hole deviation angle have little effect on the formation of hydrate in wellbores.
科研通智能强力驱动
Strongly Powered by AbleSci AI