For many years amyloidosis was considered an extremely rare, somewhat mysterious disease. However, in the last 2–3 decades its pathogenesis, particularly that of renal amyloidosis has been carefully dissected in the research laboratory using in-vitro and, to a lesser extent, in-vivo models. These have provided a molecular understanding of sequential events that take place in the renal mesangium leading to the formation of amyloid fibrils and eventual extrusion into the mesangial matrix, which itself becomes seriously damaged and, in due time, replaced by the fibrillary material. Amyloid, once considered to be an "inert" substance, has been proven to be involved in crucial biological processes that result in the destruction and eventual replacement of normal renal constituents. This review centers on mechanisms involved in the renal glomerular amyloidosis to understand its pathogenesis.