G蛋白偶联受体
异三聚体G蛋白
变构调节
信号
药物发现
信号转导
G蛋白
计算生物学
受体
功能选择性
生物
神经科学
生物信息学
细胞生物学
生物化学
作者
Jeffrey S. Smith,Robert J. Lefkowitz,Sudarshan Rajagopal
摘要
A given G protein-coupled receptor can signal through a range of downstream transducers depending on the stimulating ligand, enabling biased signalling towards different biological outcomes. Lefkowitz and colleagues describe the latest advances in the field, including efforts to harness biased signalling for improved therapeutic outcomes. G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR–transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI