Language Models are Few-Shot Learners

计算机科学 任务(项目管理) 语言模型 自然语言处理 判决 人工智能 词(群论) 简单(哲学) 语言学 认识论 哲学 经济 管理
作者
T. B. Brown,Benjamin Mann,Nick Ryder,Melanie Subbiah,Jared Kaplan,Prafulla Dhariwal,Arvind Neelakantan,Pranav Shyam,Girish Sastry,Amanda Askell,Sandhini Agarwal,Ariel Herbert-Voss,Gretchen Krueger,Tom Henighan,Rewon Child,Aditya Ramesh,Daniel M. Ziegler,Jeffrey Wu,Clemens Winter,Christopher Hesse,Mark Chen,Eric J. Sigler,Mateusz Litwin,Scott Gray,Benjamin Chess,Jack Clark,Christopher Berner,Sam McCandlish,Alec Radford,Ilya Sutskever,Dario Amodei
出处
期刊:Cornell University - arXiv 被引量:1826
摘要

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流年完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
清欢完成签到,获得积分10
4秒前
Kaelin完成签到,获得积分20
5秒前
小米稀饭发布了新的文献求助30
5秒前
Mr李完成签到,获得积分10
6秒前
lddd发布了新的文献求助10
6秒前
科目三应助璐洋采纳,获得10
6秒前
风雨无阻完成签到,获得积分10
6秒前
6秒前
seven完成签到,获得积分10
7秒前
feiyu发布了新的文献求助10
7秒前
CodeCraft应助黄浦江采纳,获得10
8秒前
朱逸梦完成签到,获得积分10
8秒前
cff发布了新的文献求助10
8秒前
10秒前
Kaelin发布了新的文献求助200
10秒前
12秒前
zengyan发布了新的文献求助10
12秒前
12秒前
12秒前
烟花应助ruby采纳,获得10
13秒前
14秒前
Owen应助Zh采纳,获得10
15秒前
15秒前
传奇3应助ljs采纳,获得10
15秒前
16秒前
qqm关注了科研通微信公众号
16秒前
wwz应助zz采纳,获得10
16秒前
cff完成签到,获得积分10
17秒前
17秒前
Hoooo...发布了新的文献求助10
18秒前
18秒前
19秒前
完美世界应助着急的谷芹采纳,获得10
19秒前
汉堡包应助楚楚楚采纳,获得10
19秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866