Regulating Cryptocurrencies: A Supervised Machine Learning Approach to De-Anonymizing the Bitcoin Blockchain

数字加密货币 计算机科学 块链 化名 匿名 大数据 人工智能 集合(抽象数据类型) 机器学习 Boosting(机器学习) 监督学习 数据挖掘 计算机安全 人工神经网络 法学 程序设计语言 政治学
作者
Hao Hua Sun Yin,Klaus Christian Langenheldt,Mikkel Alexander Harlev,Raghava Rao Mukkamala,Ravi Vatrapu
出处
期刊:Journal of Management Information Systems [Taylor & Francis]
卷期号:36 (1): 37-73 被引量:190
标识
DOI:10.1080/07421222.2018.1550550
摘要

Bitcoin is a cryptocurrency whose transactions are recorded on a distributed, openly accessible ledger. On the Bitcoin Blockchain, an owning entity’s real-world identity is hidden behind a pseudonym, a so-called address. Therefore, Bitcoin is widely assumed to provide a high degree of anonymity, which is a driver for its frequent use for illicit activities. This paper presents a novel approach for de-anonymizing the Bitcoin Blockchain by using Supervised Machine Learning to predict the type of yet-unidentified entities. We utilized a sample of 957 entities (with ≈385 million transactions), whose identity and type had been revealed, as training set data and built classifiers differentiating among 12 categories. Our main finding is that we can indeed predict the type of a yet-unidentified entity. Using the Gradient Boosting algorithm with default parameters, we achieve a mean cross-validation accuracy of 80.42% and F1-score of ≈79.64%. We show two examples, one where we predict on a set of 22 clusters that are suspected to be related to cybercriminal activities, and another where we classify 153,293 clusters to provide an estimation of the activity on the Bitcoin ecosystem. We discuss the potential applications of our method for organizational regulation and compliance, societal implications, outline study limitations, and propose future research directions. A prototype implementation of our method for organizational use is included in the appendix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗成风发布了新的文献求助10
1秒前
万能图书馆应助甘博采纳,获得10
1秒前
1秒前
fmy发布了新的文献求助30
2秒前
2秒前
星辰大海应助王博雅采纳,获得10
2秒前
ngg完成签到,获得积分10
3秒前
小诗发布了新的文献求助10
3秒前
3秒前
kaka完成签到,获得积分10
3秒前
天天快乐应助KK采纳,获得30
3秒前
孙佳美发布了新的文献求助10
3秒前
4秒前
善学以致用应助梨花诗采纳,获得10
4秒前
yun发布了新的文献求助10
4秒前
mncvjs发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
4秒前
5秒前
PEAR完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
锦鲤发布了新的文献求助30
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得30
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589298
求助须知:如何正确求助?哪些是违规求助? 4004485
关于积分的说明 12398008
捐赠科研通 3681414
什么是DOI,文献DOI怎么找? 2029114
邀请新用户注册赠送积分活动 1062604
科研通“疑难数据库(出版商)”最低求助积分说明 948309