Regulating Cryptocurrencies: A Supervised Machine Learning Approach to De-Anonymizing the Bitcoin Blockchain

数字加密货币 计算机科学 块链 化名 匿名 大数据 人工智能 集合(抽象数据类型) 机器学习 Boosting(机器学习) 监督学习 数据挖掘 计算机安全 人工神经网络 法学 程序设计语言 政治学
作者
Hao Hua Sun Yin,Klaus Christian Langenheldt,Mikkel Alexander Harlev,Raghava Rao Mukkamala,Ravi Vatrapu
出处
期刊:Journal of Management Information Systems [Informa]
卷期号:36 (1): 37-73 被引量:190
标识
DOI:10.1080/07421222.2018.1550550
摘要

Bitcoin is a cryptocurrency whose transactions are recorded on a distributed, openly accessible ledger. On the Bitcoin Blockchain, an owning entity’s real-world identity is hidden behind a pseudonym, a so-called address. Therefore, Bitcoin is widely assumed to provide a high degree of anonymity, which is a driver for its frequent use for illicit activities. This paper presents a novel approach for de-anonymizing the Bitcoin Blockchain by using Supervised Machine Learning to predict the type of yet-unidentified entities. We utilized a sample of 957 entities (with ≈385 million transactions), whose identity and type had been revealed, as training set data and built classifiers differentiating among 12 categories. Our main finding is that we can indeed predict the type of a yet-unidentified entity. Using the Gradient Boosting algorithm with default parameters, we achieve a mean cross-validation accuracy of 80.42% and F1-score of ≈79.64%. We show two examples, one where we predict on a set of 22 clusters that are suspected to be related to cybercriminal activities, and another where we classify 153,293 clusters to provide an estimation of the activity on the Bitcoin ecosystem. We discuss the potential applications of our method for organizational regulation and compliance, societal implications, outline study limitations, and propose future research directions. A prototype implementation of our method for organizational use is included in the appendix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助李燊采纳,获得10
1秒前
1秒前
xu发布了新的文献求助30
1秒前
2秒前
满意的蜗牛完成签到 ,获得积分10
2秒前
2秒前
古德完成签到,获得积分10
3秒前
lisa0612完成签到,获得积分10
3秒前
4秒前
4秒前
团子发布了新的文献求助10
5秒前
薯仔发布了新的文献求助10
5秒前
pluto_完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
6秒前
AN关闭了AN文献求助
6秒前
小b亮完成签到,获得积分10
7秒前
小巧酸奶发布了新的文献求助10
7秒前
8秒前
pluto_发布了新的文献求助10
9秒前
袁浩宇发布了新的文献求助10
9秒前
10秒前
稻子发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
orixero应助孔孔采纳,获得10
11秒前
12秒前
李健应助油麦菜采纳,获得10
12秒前
14秒前
14秒前
orixero应助Archer采纳,获得20
14秒前
务实青筠完成签到 ,获得积分10
14秒前
聚散流沙完成签到,获得积分10
14秒前
刘惠兴发布了新的文献求助10
15秒前
sfafasfsdf发布了新的文献求助10
15秒前
凌云完成签到,获得积分10
16秒前
何柯应助袁浩宇采纳,获得10
16秒前
16秒前
xiuT发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365