复合材料
波纹度
材料科学
编织
极限抗拉强度
环氧树脂
织布机
联锁
抗弯强度
结构工程
计算机科学
人工智能
工程类
作者
Shuo Dai,Paul Cunningham,S.J. Marshall,C. Silva
标识
DOI:10.1016/j.compositesa.2014.11.012
摘要
This paper presents a comprehensive study on the tensile, compressive, and flexural performance of six types of 3D woven carbon-fibre/epoxy composites which were manufactured using a traditional narrow fabric weaving loom and resin transfer moulding. Four orthogonal and two angle-interlock weaves were tested with the primary loading direction parallel to the warp direction. The mechanical performance was found to be affected by the distribution of resin rich regions and the waviness of the load-carrying fibres, which were determined by the fibre architectures. The binding points within the resin rich regions were found to be the damage initiation sites in all weave types under all loading conditions, which were confirmed with both visual observation and digital image correlation strain maps. Among all weave types, the angle interlock weave W-3 exhibited the highest properties under all loading conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI