生物
计算生物学
染色质
计算机科学
遗传学
表达数量性状基因座
优先次序
深度学习
人工智能
序列(生物学)
基因
单核苷酸多态性
基因型
经济
管理科学
作者
Jian Zhou,Olga G. Troyanskaya
出处
期刊:Nature Methods
[Springer Nature]
日期:2015-08-24
卷期号:12 (10): 931-934
被引量:1998
摘要
Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.
科研通智能强力驱动
Strongly Powered by AbleSci AI