已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel multi-objective green vehicle routing and scheduling model with stochastic demand, supply, and variable travel times

车辆路径问题 计算机科学 变量(数学) 调度(生产过程) 运筹学 数学优化 布线(电子设计自动化) 数学 计算机网络 数学分析
作者
Yaser Zarouk,Iraj Mahdavi,Javad Rezaeian,Francisco J. Santos‐Arteaga
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:141: 105698-105698 被引量:40
标识
DOI:10.1016/j.cor.2022.105698
摘要

We propose an optimization approach to the routing and scheduling problem for a heterogeneous transportation network that considers (i) stochastic values of demand and supply at the nodes, (ii) variable travel times between nodes conditioned by the fatigue of drivers, (iii) maximum allowed continuous driving time, and (iv) soft service time windows per customer at the nodes. The problem minimizes energy consumption and maximizes customer satisfaction. The subsequent stochastic multi-objective mixed integer programming model is solved using a hybrid approach based on chance- and epsilon-constraint methods. Given the NP-hard quality of the model, we introduce a hybrid meta-heuristic method based on genetic algorithm (GA) and simulated annealing (SA). This novel technique, named MOGASA, combines the global and local search capacities of both meta-heuristic algorithms, providing an intuitive solution approach that allows to solve problem instances considering large distribution networks with multiple types of vehicles in reasonable CPU time. We illustrate how MOGASA improves upon the hybrid chance- and epsilon-constraint exact solution method, particularly when dealing with large problem instances that cannot be solved by the latter. A medium instance scenario is used to analyze the reaction of the objective functions and the subsequent Pareto frontiers to modifications in the main structural parameters defining the transportation network. Potential applications of our stochastic framework to different types of logistic structures and retail supply chains are highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助科研不是科幻采纳,获得10
1秒前
十二码前的沉思完成签到,获得积分20
2秒前
3秒前
4秒前
5秒前
5秒前
6秒前
yu驳回了Hello应助
7秒前
8秒前
9秒前
9秒前
王富贵发布了新的文献求助10
10秒前
朴实香露发布了新的文献求助10
10秒前
12秒前
Sausage发布了新的文献求助10
12秒前
干净初彤发布了新的文献求助10
13秒前
今今完成签到 ,获得积分10
18秒前
SS关注了科研通微信公众号
19秒前
花笙关注了科研通微信公众号
19秒前
细腻的灵槐完成签到 ,获得积分10
22秒前
搜集达人应助自由与星星采纳,获得10
24秒前
Sausage完成签到,获得积分10
25秒前
26秒前
无足鸟完成签到 ,获得积分10
31秒前
32秒前
花笙发布了新的文献求助10
33秒前
34秒前
35秒前
羊肉沫发布了新的文献求助10
37秒前
jsq发布了新的文献求助10
37秒前
SS发布了新的文献求助10
41秒前
共享精神应助科研通管家采纳,获得10
41秒前
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
SYLH应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
41秒前
bkagyin应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
42秒前
SYLH应助科研通管家采纳,获得10
42秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484176
求助须知:如何正确求助?哪些是违规求助? 3073236
关于积分的说明 9130199
捐赠科研通 2764925
什么是DOI,文献DOI怎么找? 1517450
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701095