成骨细胞
电离辐射
骨髓
破骨细胞
间质细胞
医学
核医学
骨质疏松症
股骨
辐照
祖细胞
化学
内分泌学
内科学
生物
外科
干细胞
体外
细胞生物学
物理
受体
核物理学
生物化学
作者
Florence Lima,Joshua M. Swift,Elisabeth Greene,Matthew R. Allen,David A. Cunningham,L.A. Braby,Susan A. Bloomfield
出处
期刊:Radiation Research
[BioOne (Radiation Research Society)]
日期:2017-08-03
卷期号:188 (4): 433-442
被引量:22
摘要
Exposure to high-dose ionizing radiation during medical treatment exerts well-documented deleterious effects on bone health, reducing bone density and contributing to bone growth retardation in young patients and spontaneous fracture in postmenopausal women. However, the majority of human radiation exposures occur in a much lower dose range than that used in the radiation oncology clinic. Furthermore, very few studies have examined the effects of low-dose ionizing radiation on bone integrity and results have been inconsistent. In this study, mice were irradiated with a total-body dose of 0.17, 0.5 or 1 Gy to quantify the early (day 3 postirradiation) and delayed (day 21 postirradiation) effects of radiation on bone microarchitecture and bone marrow stromal cells (BMSCs). Female BALBc mice (4 months old) were divided into four groups: irradiated (0.17, 0.5 and 1 Gy) and sham-irradiated controls (0 Gy). Micro-computed tomography analysis of distal femur trabecular bone from animals at day 21 after exposure to 1 Gy of X-ray radiation revealed a 21% smaller bone volume (BV/TV), 22% decrease in trabecular numbers (Tb.N) and 9% greater trabecular separation (Tb.Sp) compared to sham-irradiated controls (P < 0.05). We evaluated the differentiation capacity of bone marrow stromal cells harvested at days 3 and 21 postirradiation into osteoblast and adipocyte cells. Osteoblast and adipocyte differentiation was decreased when cells were harvested at day 3 postirradiation but enhanced in cells isolated at day 21 postirradiation, suggesting a compensatory recovery process. Osteoclast differentiation was increased in 1 Gy irradiated BMSCs harvested at day 3 postirradiation, but not in those harvested at day 21 postirradiation, compared to controls. This study provides evidence of an early, radiation-induced decrease in osteoblast activity and numbers, as well as a later recovery effect after exposure to 1 Gy of X-rays, whereas osteoclastogenesis was enhanced. A better understanding of the effects of radiation on osteoprogenitor cell populations could lead to more effective therapeutic interventions that protect bone integrity for individuals exposed to low-dose ionizing radiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI